Lightweight, multifunctional microcellular PMMA/Fe 3 O 4 @MWCNTs nanocomposite foams with efficient electromagnetic interference shielding
Tóm tắt
Từ khóa
Tài liệu tham khảo
Chung, 2001, Electromagnetic interference shielding effectiveness of carbon materials, Carbon, 39, 279, 10.1016/S0008-6223(00)00184-6
Thomassin, 2013, Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials, Mater Sci Eng R, 74, 211, 10.1016/j.mser.2013.06.001
Yang, 2005, Novel carbon nanotube−polystyrene foam composites for electromagnetic interference shielding, Nano Lett, 5, 2131, 10.1021/nl051375r
Gupta, 2013, Improved nanoindentation and microwave shielding properties of modified MWCNT reinforced polyurethane composites, J Mater Chem A, 1, 9138, 10.1039/c3ta11611e
Shen, 2013, Lightweight, multifunctional polyetherimide/graphene@Fe3O4 composite foams for shielding of electromagnetic pollution, ACS Appl Mater Interfaces, 5, 11383, 10.1021/am4036527
Zeng, 2016, Lightweight and anisotropic porous MWCNT/WPU composites for ultrahigh performance electromagnetic interference shielding, Adv Funct Mater, 26, 303, 10.1002/adfm.201503579
Chen, 2015, Magnetic and electrically conductive epoxy/graphene/carbonyl iron nanocomposites for efficient electromagnetic interference shielding, Compos Sci Technol, 118, 178, 10.1016/j.compscitech.2015.08.023
Ameli, 2014, Lightweight polypropylene/stainless-steel fiber composite foams with low percolation for efficient electromagnetic interference shielding, ACS Appl Mater Interfaces, 6, 11091, 10.1021/am500445g
Wu, 2016, Largely enhanced thermal and electrical conductivity via constructing double percolated filler network in polypropylene/expanded graphite – multi-wall carbon nanotubes ternary composites, Compos Sci Technol, 130, 28, 10.1016/j.compscitech.2016.04.034
Yousefi, 2014, Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding, Adv Mater, 26, 5480, 10.1002/adma.201305293
Ning Li, 2006, Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites, Nano Lett, 6, 1141, 10.1021/nl0602589
Antunes, 2014, Multifunctional polymer foams with carbon nanoparticles, Prog Polym Sci, 39, 486, 10.1016/j.progpolymsci.2013.11.002
Ameli, 2013, Electrical properties and electromagnetic interference shielding effectiveness of polypropylene/carbon fiber composite foams, Carbon, 60, 379, 10.1016/j.carbon.2013.04.050
Monnereau, 2015, Gradient foaming of polycarbonate/carbon nanotube based nanocomposites with supercritical carbon dioxide and their EMI shielding performances, Polymer, 59, 117, 10.1016/j.polymer.2014.11.063
Naeem, 2017, Development of porous and electrically conductive activated carbon web for effective EMI shielding applications, Carbon, 111, 439, 10.1016/j.carbon.2016.10.026
Sun, 2016, Graphene foam/carbon nanotube/poly (dimethyl siloxane) composites for exceptional microwave shielding, Compos Part A, 85, 199, 10.1016/j.compositesa.2016.03.009
Wu, 2017, Ultralight graphene foam/conductive polymer composites for exceptional electromagnetic interference shielding, ACS Appl Mater Interfaces, 9, 9059, 10.1021/acsami.7b01017
Yang, 2016, Enhanced conductive polymer nanocomposite by foam structure and polyelectrolyte encapsulated on carbon nanotubes, Compos Sci Technol, 123, 106, 10.1016/j.compscitech.2015.12.009
Ameli, 2014, Polypropylene/carbon nanotube nano/microcellular structures with high dielectric permittivity, low dielectric loss, and low percolation threshold, Carbon, 71, 206, 10.1016/j.carbon.2014.01.031
Thomassin, 2008, Foams of polycaprolactone/MWNT nanocomposites for efficient EMI reduction, J Mater Chem, 18, 792, 10.1039/b709864b
Li, 2016, Morphologies and electromagnetic interference shielding performances of microcellular epoxy/multi-wall carbon nanotube nanocomposite foams, Compo Sci Technol, 129, 70, 10.1016/j.compscitech.2016.04.003
Kuang, 2016, Facile preparation of lightweight high-strength biodegradable polymer/multi-walled carbon nanotubes nanocomposite foams for electromagnetic interference shielding, Carbon, 105, 305, 10.1016/j.carbon.2016.04.052
Yan, 2012, Efficient electromagnetic interference shielding of lightweight graphene/polystyrene composite, J Mater Chem, 22, 18772, 10.1039/c2jm32692b
Pawar, 2016, High frequency millimetre wave absorbers derived from polymeric nanocomposites, Polymer, 84, 398, 10.1016/j.polymer.2016.01.010
Li, 2016, Open-cell phenolic carbon foam and electromagnetic interference shielding properties, Carbon, 104, 90, 10.1016/j.carbon.2016.03.055
Jia, 2015, Numerical characterization of magnetically aligned multiwalled carbon nanotube-Fe3O4 nanoparticle complex, ACS Appl Mater Interfaces, 7, 3170, 10.1021/am507583r
Chen, 2015, Enhanced electromagnetic interference shielding efficiency of polystyrene/graphene composites with magnetic Fe3O4 nanoparticles, Carbon, 82, 67, 10.1016/j.carbon.2014.10.031
Pawar, 2015, Electromagnetic interference shielding through MWNT grafted Fe3O4 nanoparticles in PC/SAN blends, J Mater Chem A, 3, 656, 10.1039/C4TA04559A
Wang, 2015, Hierarchical composites of polyaniline nanorod arrays covalently-grafted on the surfaces of graphene@Fe3O4@C with high microwave absorption performance, Compos Sci Technol, 108, 1, 10.1016/j.compscitech.2014.12.011
Lu, 2015, Multiscale assembly of grape-like ferroferric oxide and carbon nanotubes: a smart absorber prototype varying temperature to tune intensities, ACS Appl Mater Interfaces, 7, 19408, 10.1021/acsami.5b05595
Zhan, 2011, Preparation, characterization and electromagnetic properties of carbon nanotubes/Fe3O4 inorganic hybrid material, Appl Sur Sci, 257, 4524, 10.1016/j.apsusc.2010.08.088
Sun, 2013, Laminated magnetic graphene with enhanced electromagnetic wave absorption properties, J Mater Chem C, 1, 765, 10.1039/C2TC00159D
Liu, 2008, Polyaniline-coated Fe3O4 nanoparticle-carbon-nanotube composite and its application in electrochemical biosensing, Small, 4, 462, 10.1002/smll.200701018
Zhang, 2012, Efficient removal of heavy metal ions by thiol-functionalized superparamagnetic carbon nanotubes, Chem Eng J, 210, 45, 10.1016/j.cej.2012.08.062
He, 2010, Supraparamagnetic, conductive, and processable multifunctional graphene nanosheets coated with high-density Fe3O4 nanoparticles, ACS Appl Mater Interfaces, 2, 3201, 10.1021/am100673g
Saini, 2013, Electrical and mechanical properties of PMMA/reduced graphene oxide nanocomposites prepared via in situ polymerization, J Mater Sci, 48, 6223, 10.1007/s10853-013-7420-8
Okolieocha, 2015, Preparation of microcellular low-density PMMA nanocomposite foams: influence of different fillers on the mechanical, rheological and cell morphological properties, Compos Sci Technol, 118, 108, 10.1016/j.compscitech.2015.08.016
Nelson, 1998, Ab initio calculations on CO2 binding to carbonyl groups, J Phys Chem A, 102, 7860, 10.1021/jp981824u
Zeng, 2010, Synthesis and processing of PMMA carbon nanotube nanocomposite foams, Polymer, 51, 655, 10.1016/j.polymer.2009.12.032
Zeng, 2013, Morphology and tensile properties of PMMA carbon nanotubes nanocomposites and nanocomposites foams, Compos Sci Technol, 82, 29, 10.1016/j.compscitech.2013.03.024
Chen, 2011, An experimental and theoretical investigation of the compressive properties of multi-walled carbon nanotube/poly(methyl methacrylate) nanocomposite foams, Polymer, 52, 2899, 10.1016/j.polymer.2011.04.050
Tran, 2013, The influence of foam morphology of multi-walled carbon nanotubes/poly(methylmethacrylate) nanocomposites on electrical conductivity, Polymer, 54, 3261, 10.1016/j.polymer.2013.03.053
Chen, 2012, Controlling bubble density in MWNT/polymer nanocomposite foams by MWNT surface modification, Compos Sci Technol, 72, 190, 10.1016/j.compscitech.2011.11.001
Yang, 2009, Effects of carbon nanotube functionalization on the mechanical and thermal properties of epoxy composites, Carbon, 47, 1723, 10.1016/j.carbon.2009.02.029
Wen, 2013, Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites, Carbon, 65, 124, 10.1016/j.carbon.2013.07.110
Zhai, 2006, Heterogeneous nucleation uniformizing cell size distribution in microcellular nanocomposites foams, Polymer, 47, 7580, 10.1016/j.polymer.2006.08.034
Shen, 2005, Synthesis of polystyrene–carbon nanofibers nanocomposite foams, Polymer, 46, 5218, 10.1016/j.polymer.2005.04.010
Zhang, 2011, Tough graphene-polymer microcellular foams for electromagnetic interference shielding, ACS Appl Mater Interfaces, 3, 918, 10.1021/am200021v
Dai, 1996, Probing electrical transport in nanomaterials – conductivity of individual carbon nanotubes, Science, 272
Li, 2017, The influence of gradient and sandwich configurations on the electromagnetic interference shielding performance of multilayered thermoplastic polyurethane/graphene composite foams, Compos Sci Technol, 138, 209, 10.1016/j.compscitech.2016.12.002
Al-Saleh, 2011, Copper nanowire/polystyrene nanocomposites: lower percolation threshold and higher EMI shielding, Compos Part A, 42, 92, 10.1016/j.compositesa.2010.10.003
Mahmoodi, 2012, The electrical conductivity and electromagnetic interference shielding of injection molded multi-walled carbon nanotube/polystyrene composites, Carbon, 50, 1455, 10.1016/j.carbon.2011.11.004
Al-Saleh, 2009, Electromagnetic interference shielding mechanisms of CNT/polymer composites, Carbon, 47, 1738, 10.1016/j.carbon.2009.02.030
Wang, 2016, 3D network porous polymeric composites with outstanding electromagnetic interference shielding, Compos Sci Technol, 125, 22, 10.1016/j.compscitech.2016.01.007
Li, 2016, Effect of multi-walled carbon nanotubes on mechanical, thermal and electrical properties of phenolic foam via in-situ polymerization, Compos Part A, 82, 214, 10.1016/j.compositesa.2015.11.014
Gedler, 2016, Enhanced electromagnetic interference shielding effectiveness of polycarbonate/graphene nanocomposites foamed via 1-step supercritical carbon dioxide process, Mater Des, 90, 906, 10.1016/j.matdes.2015.11.021
Ling, 2013, Facile preparation of lightweight microcellular polyetherimide/graphene composite foams for electromagnetic interference shielding, ACS Appl Mater Interfaces, 5, 2677, 10.1021/am303289m