Lightweight, multifunctional microcellular PMMA/Fe 3 O 4 @MWCNTs nanocomposite foams with efficient electromagnetic interference shielding

Composites Part A: Applied Science and Manufacturing - Tập 100 - Trang 128-138 - 2017
Hongming Zhang1, Guangcheng Zhang1, Jiantong Li1, Xun Fan1, Zhanxin Jing1, Jianwei Li1, Xuetao Shi1
1Department of Applied Chemistry, MOE Key Lab of Applied Physics and Chemistry in Space, School of Natural and Applied Sciences, Northwestern Polytechnical University, Xi’an 710072, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Chung, 2001, Electromagnetic interference shielding effectiveness of carbon materials, Carbon, 39, 279, 10.1016/S0008-6223(00)00184-6

Thomassin, 2013, Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials, Mater Sci Eng R, 74, 211, 10.1016/j.mser.2013.06.001

Yang, 2005, Novel carbon nanotube−polystyrene foam composites for electromagnetic interference shielding, Nano Lett, 5, 2131, 10.1021/nl051375r

Gupta, 2013, Improved nanoindentation and microwave shielding properties of modified MWCNT reinforced polyurethane composites, J Mater Chem A, 1, 9138, 10.1039/c3ta11611e

Shen, 2013, Lightweight, multifunctional polyetherimide/graphene@Fe3O4 composite foams for shielding of electromagnetic pollution, ACS Appl Mater Interfaces, 5, 11383, 10.1021/am4036527

Zeng, 2016, Lightweight and anisotropic porous MWCNT/WPU composites for ultrahigh performance electromagnetic interference shielding, Adv Funct Mater, 26, 303, 10.1002/adfm.201503579

Chen, 2015, Magnetic and electrically conductive epoxy/graphene/carbonyl iron nanocomposites for efficient electromagnetic interference shielding, Compos Sci Technol, 118, 178, 10.1016/j.compscitech.2015.08.023

Ameli, 2014, Lightweight polypropylene/stainless-steel fiber composite foams with low percolation for efficient electromagnetic interference shielding, ACS Appl Mater Interfaces, 6, 11091, 10.1021/am500445g

Wu, 2016, Largely enhanced thermal and electrical conductivity via constructing double percolated filler network in polypropylene/expanded graphite – multi-wall carbon nanotubes ternary composites, Compos Sci Technol, 130, 28, 10.1016/j.compscitech.2016.04.034

Yousefi, 2014, Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding, Adv Mater, 26, 5480, 10.1002/adma.201305293

Ning Li, 2006, Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites, Nano Lett, 6, 1141, 10.1021/nl0602589

Antunes, 2014, Multifunctional polymer foams with carbon nanoparticles, Prog Polym Sci, 39, 486, 10.1016/j.progpolymsci.2013.11.002

Ameli, 2013, Electrical properties and electromagnetic interference shielding effectiveness of polypropylene/carbon fiber composite foams, Carbon, 60, 379, 10.1016/j.carbon.2013.04.050

Chen, 2013, Polymer nanocomposite foams, J Mater Chem A, 1, 3837, 10.1039/c2ta00086e

Monnereau, 2015, Gradient foaming of polycarbonate/carbon nanotube based nanocomposites with supercritical carbon dioxide and their EMI shielding performances, Polymer, 59, 117, 10.1016/j.polymer.2014.11.063

Naeem, 2017, Development of porous and electrically conductive activated carbon web for effective EMI shielding applications, Carbon, 111, 439, 10.1016/j.carbon.2016.10.026

Sun, 2016, Graphene foam/carbon nanotube/poly (dimethyl siloxane) composites for exceptional microwave shielding, Compos Part A, 85, 199, 10.1016/j.compositesa.2016.03.009

Wu, 2017, Ultralight graphene foam/conductive polymer composites for exceptional electromagnetic interference shielding, ACS Appl Mater Interfaces, 9, 9059, 10.1021/acsami.7b01017

Yang, 2016, Enhanced conductive polymer nanocomposite by foam structure and polyelectrolyte encapsulated on carbon nanotubes, Compos Sci Technol, 123, 106, 10.1016/j.compscitech.2015.12.009

Ameli, 2014, Polypropylene/carbon nanotube nano/microcellular structures with high dielectric permittivity, low dielectric loss, and low percolation threshold, Carbon, 71, 206, 10.1016/j.carbon.2014.01.031

Thomassin, 2008, Foams of polycaprolactone/MWNT nanocomposites for efficient EMI reduction, J Mater Chem, 18, 792, 10.1039/b709864b

Li, 2016, Morphologies and electromagnetic interference shielding performances of microcellular epoxy/multi-wall carbon nanotube nanocomposite foams, Compo Sci Technol, 129, 70, 10.1016/j.compscitech.2016.04.003

Kuang, 2016, Facile preparation of lightweight high-strength biodegradable polymer/multi-walled carbon nanotubes nanocomposite foams for electromagnetic interference shielding, Carbon, 105, 305, 10.1016/j.carbon.2016.04.052

Yan, 2012, Efficient electromagnetic interference shielding of lightweight graphene/polystyrene composite, J Mater Chem, 22, 18772, 10.1039/c2jm32692b

Pawar, 2016, High frequency millimetre wave absorbers derived from polymeric nanocomposites, Polymer, 84, 398, 10.1016/j.polymer.2016.01.010

Li, 2016, Open-cell phenolic carbon foam and electromagnetic interference shielding properties, Carbon, 104, 90, 10.1016/j.carbon.2016.03.055

Jia, 2015, Numerical characterization of magnetically aligned multiwalled carbon nanotube-Fe3O4 nanoparticle complex, ACS Appl Mater Interfaces, 7, 3170, 10.1021/am507583r

Chen, 2015, Enhanced electromagnetic interference shielding efficiency of polystyrene/graphene composites with magnetic Fe3O4 nanoparticles, Carbon, 82, 67, 10.1016/j.carbon.2014.10.031

Pawar, 2015, Electromagnetic interference shielding through MWNT grafted Fe3O4 nanoparticles in PC/SAN blends, J Mater Chem A, 3, 656, 10.1039/C4TA04559A

Wang, 2015, Hierarchical composites of polyaniline nanorod arrays covalently-grafted on the surfaces of graphene@Fe3O4@C with high microwave absorption performance, Compos Sci Technol, 108, 1, 10.1016/j.compscitech.2014.12.011

Lu, 2015, Multiscale assembly of grape-like ferroferric oxide and carbon nanotubes: a smart absorber prototype varying temperature to tune intensities, ACS Appl Mater Interfaces, 7, 19408, 10.1021/acsami.5b05595

Zhan, 2011, Preparation, characterization and electromagnetic properties of carbon nanotubes/Fe3O4 inorganic hybrid material, Appl Sur Sci, 257, 4524, 10.1016/j.apsusc.2010.08.088

Sun, 2013, Laminated magnetic graphene with enhanced electromagnetic wave absorption properties, J Mater Chem C, 1, 765, 10.1039/C2TC00159D

Liu, 2008, Polyaniline-coated Fe3O4 nanoparticle-carbon-nanotube composite and its application in electrochemical biosensing, Small, 4, 462, 10.1002/smll.200701018

Zhang, 2012, Efficient removal of heavy metal ions by thiol-functionalized superparamagnetic carbon nanotubes, Chem Eng J, 210, 45, 10.1016/j.cej.2012.08.062

He, 2010, Supraparamagnetic, conductive, and processable multifunctional graphene nanosheets coated with high-density Fe3O4 nanoparticles, ACS Appl Mater Interfaces, 2, 3201, 10.1021/am100673g

Saini, 2013, Electrical and mechanical properties of PMMA/reduced graphene oxide nanocomposites prepared via in situ polymerization, J Mater Sci, 48, 6223, 10.1007/s10853-013-7420-8

Okolieocha, 2015, Preparation of microcellular low-density PMMA nanocomposite foams: influence of different fillers on the mechanical, rheological and cell morphological properties, Compos Sci Technol, 118, 108, 10.1016/j.compscitech.2015.08.016

Nelson, 1998, Ab initio calculations on CO2 binding to carbonyl groups, J Phys Chem A, 102, 7860, 10.1021/jp981824u

Zeng, 2010, Synthesis and processing of PMMA carbon nanotube nanocomposite foams, Polymer, 51, 655, 10.1016/j.polymer.2009.12.032

Zeng, 2013, Morphology and tensile properties of PMMA carbon nanotubes nanocomposites and nanocomposites foams, Compos Sci Technol, 82, 29, 10.1016/j.compscitech.2013.03.024

Chen, 2011, An experimental and theoretical investigation of the compressive properties of multi-walled carbon nanotube/poly(methyl methacrylate) nanocomposite foams, Polymer, 52, 2899, 10.1016/j.polymer.2011.04.050

Tran, 2013, The influence of foam morphology of multi-walled carbon nanotubes/poly(methylmethacrylate) nanocomposites on electrical conductivity, Polymer, 54, 3261, 10.1016/j.polymer.2013.03.053

Chen, 2012, Controlling bubble density in MWNT/polymer nanocomposite foams by MWNT surface modification, Compos Sci Technol, 72, 190, 10.1016/j.compscitech.2011.11.001

Yang, 2009, Effects of carbon nanotube functionalization on the mechanical and thermal properties of epoxy composites, Carbon, 47, 1723, 10.1016/j.carbon.2009.02.029

Wen, 2013, Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites, Carbon, 65, 124, 10.1016/j.carbon.2013.07.110

Zhai, 2006, Heterogeneous nucleation uniformizing cell size distribution in microcellular nanocomposites foams, Polymer, 47, 7580, 10.1016/j.polymer.2006.08.034

Shen, 2005, Synthesis of polystyrene–carbon nanofibers nanocomposite foams, Polymer, 46, 5218, 10.1016/j.polymer.2005.04.010

Zhang, 2011, Tough graphene-polymer microcellular foams for electromagnetic interference shielding, ACS Appl Mater Interfaces, 3, 918, 10.1021/am200021v

Dai, 1996, Probing electrical transport in nanomaterials – conductivity of individual carbon nanotubes, Science, 272

Li, 2017, The influence of gradient and sandwich configurations on the electromagnetic interference shielding performance of multilayered thermoplastic polyurethane/graphene composite foams, Compos Sci Technol, 138, 209, 10.1016/j.compscitech.2016.12.002

Al-Saleh, 2011, Copper nanowire/polystyrene nanocomposites: lower percolation threshold and higher EMI shielding, Compos Part A, 42, 92, 10.1016/j.compositesa.2010.10.003

Mahmoodi, 2012, The electrical conductivity and electromagnetic interference shielding of injection molded multi-walled carbon nanotube/polystyrene composites, Carbon, 50, 1455, 10.1016/j.carbon.2011.11.004

Al-Saleh, 2009, Electromagnetic interference shielding mechanisms of CNT/polymer composites, Carbon, 47, 1738, 10.1016/j.carbon.2009.02.030

Wang, 2016, 3D network porous polymeric composites with outstanding electromagnetic interference shielding, Compos Sci Technol, 125, 22, 10.1016/j.compscitech.2016.01.007

Li, 2016, Effect of multi-walled carbon nanotubes on mechanical, thermal and electrical properties of phenolic foam via in-situ polymerization, Compos Part A, 82, 214, 10.1016/j.compositesa.2015.11.014

Gedler, 2016, Enhanced electromagnetic interference shielding effectiveness of polycarbonate/graphene nanocomposites foamed via 1-step supercritical carbon dioxide process, Mater Des, 90, 906, 10.1016/j.matdes.2015.11.021

Ling, 2013, Facile preparation of lightweight microcellular polyetherimide/graphene composite foams for electromagnetic interference shielding, ACS Appl Mater Interfaces, 5, 2677, 10.1021/am303289m

Yang, 2005, Conductive carbon nanoriber-polymer foam structures, Adv Mater, 17, 1999, 10.1002/adma.200500615