Lightweight conductive graphene/thermoplastic polyurethane foams with ultrahigh compressibility for piezoresistive sensing

Journal of Materials Chemistry C - Tập 5 Số 1 - Trang 73-83
Hu Liu1,2,3,4,5, Mengyao Dong1,3,6,4,5, Wenju Huang1,3,6,4,5, Jiachen Gao1,3,6,4,5, Kun Dai1,3,6,4,5, Jiang Guo7,2,8,9, Guoqiang Zheng1,3,6,4,5, Chuntai Liu1,3,6,4,5, Changyu Shen1,3,6,4,5, Zhanhu Guo7,2,8,9
1College of Materials Science and Engineering, The Key Laboratory of Material Processing and Mold of Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
2Integrated Composites Laboratory (ICL), Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996 USA
3P. R. China
4Zhengzhou
5Zhengzhou University
6The Key Laboratory of Material Processing and Mold of Ministry of Education
7Department of Chemical & Biomolecular Engineering
8Knoxville
9University of Tennessee

Tóm tắt

Lightweight conductive graphene/thermoplastic polyurethane foams exhibited stable piezoresistive sensing signals at a strain of up to 90%.

Từ khóa


Tài liệu tham khảo

Kong, 2014, Carbon, 77, 199, 10.1016/j.carbon.2014.05.022

Fan, 2012, Carbon, 50, 4085, 10.1016/j.carbon.2012.04.056

Li, 2014, ACS Appl. Mater. Interfaces, 6, 1313, 10.1021/am4053305

Liu, 2016, J. Mater. Chem. C, 4, 157, 10.1039/C5TC02751A

Du, 2016, J. Mater. Chem. C, 4, 3224, 10.1039/C6TC00350H

Liu, 2016, Appl. Phys. Lett., 1, 011904, 10.1063/1.4939265

Li, 2015, Sens. Actuators, B, 221, 1279, 10.1016/j.snb.2015.07.100

Lim, 2016, J. Mater. Chem. C, 4, 5642, 10.1039/C6TC00251J

Wu, 2016, Compos. Sci. Technol., 124, 44, 10.1016/j.compscitech.2016.01.012

Liu, 2016, J. Mater. Chem. C, 4, 4459, 10.1039/C6TC00987E

Zhao, 2013, Composites, Part A, 48, 129, 10.1016/j.compositesa.2013.01.004

Qi, 2015, Sens. Actuators, B, 213, 20, 10.1016/j.snb.2015.02.067

Pang, 2013, RSC Adv., 3, 19802, 10.1039/c3ra43375g

Wei, 2014, Colloid Polym. Sci., 292, 2891, 10.1007/s00396-014-3334-5

Zha, 2013, J. Mater. Chem. A, 1, 843, 10.1039/C2TA00429A

Liu, 2016, Nanoscale, 8, 12977, 10.1039/C6NR02216B

Zhou, 2016, Compos. Sci. Technol., 125, 1, 10.1016/j.compscitech.2016.01.016

Zhao, 2010, Nanotechnology, 21, 305502, 10.1088/0957-4484/21/30/305502

Tung, 2016, Carbon, 108, 450, 10.1016/j.carbon.2016.07.018

Yamada, 2011, Nat. Nanotechnol., 6, 296, 10.1038/nnano.2011.36

Yao, 2013, Adv. Mater., 25, 6692, 10.1002/adma.201303041

Chen, 2007, Adv. Funct. Mater., 17, 898, 10.1002/adfm.200600519

Dang, 2008, J. Appl. Phys., 104, 024114, 10.1063/1.2956605

Ling, 2013, ACS Appl. Mater. Interfaces, 5, 2677, 10.1021/am303289m

Shen, 2013, ACS Appl. Mater. Interfaces, 5, 11383, 10.1021/am4036527

Zhang, 2011, ACS Appl. Mater. Interfaces, 3, 918, 10.1021/am200021v

Wang, 2016, Compos. Sci. Technol., 125, 22, 10.1016/j.compscitech.2016.01.007

Jing, 2014, Polym. Compos., 35, 1408, 10.1002/pc.22793

Martin, 2014, Biomaterials, 35, 3766, 10.1016/j.biomaterials.2014.01.026

Jell, 2008, J. Mater. Chem., 18, 1865, 10.1039/b716109c

Huang, 2014, Mater. Lett., 136, 126, 10.1016/j.matlet.2014.08.044

Kabiri, 2011, Polym. Compos., 2, 277, 10.1002/pc.21046

Gui, 2010, Adv. Mater., 22, 617, 10.1002/adma.200902986

Liang, 2012, Angew. Chem., Int. Ed. Engl., 51, 5101, 10.1002/anie.201200710

Si, 2014, Nat. Commun., 5, 5802, 10.1038/ncomms6802

Lin, 2013, Polym. Int., 62, 134, 10.1002/pi.4291

Gao, 2008, Mater. Lett., 62, 3530, 10.1016/j.matlet.2008.03.053

Stankovich, 2006, Nature, 442, 282, 10.1038/nature04969

Hu, 2014, ACS Appl. Mater. Interfaces, 6, 3242, 10.1021/am4050647

Samad, 2015, Small, 11, 2380, 10.1002/smll.201403532

Samad, 2015, ACS Appl. Mater. Interfaces, 7, 9195, 10.1021/acsami.5b01608

Chen, 2011, Nat. Mater., 10, 424, 10.1038/nmat3001

Kuila, 2011, Carbon, 49, 1033, 10.1016/j.carbon.2010.10.031

Wang, 2011, J. Mater. Chem., 21, 4222, 10.1039/c0jm03710a

Cao, 2010, Carbon, 48, 3834, 10.1016/j.carbon.2010.06.048

He, 2012, Polymer, 53, 3642, 10.1016/j.polymer.2012.06.010

Li, 2015, Composites, Part A, 68, 264, 10.1016/j.compositesa.2014.10.016

Lee, 2009, Macromol. Chem. Phys., 210, 1247, 10.1002/macp.200900157

Zhu, 2011, Macromolecules, 44, 4382, 10.1021/ma102684f

Barick, 2011, J. Mater. Sci. Eng. B, 176, 1435, 10.1016/j.mseb.2011.08.001

Khan, 2008, Acta Biomater., 4, 1275, 10.1016/j.actbio.2008.04.016

Menes, 2012, Compos. Sci. Technol., 72, 1595, 10.1016/j.compscitech.2012.06.016

Tang, 2013, Carbon, 60, 16, 10.1016/j.carbon.2013.03.050

Wang, 2014, Nano Res., 7, 704, 10.1007/s12274-014-0432-0

Olivas-Armendáriz, 2010, J. Alloys Compd., 495, 592, 10.1016/j.jallcom.2009.10.205

Huang, 2002, Adv. Polym. Technol., 21, 299, 10.1002/adv.10025

Yoonessi, 2010, ACS Nano, 4, 7211, 10.1021/nn1019626

Han, 2013, Appl. Phys. Lett., 102, 051903, 10.1063/1.4790437

Hodlur, 2014, Compos. Sci. Technol., 90, 160, 10.1016/j.compscitech.2013.11.005

Hempel, 2012, Nano Lett., 12, 5714, 10.1021/nl302959a

Yuan, 2016, RSC Adv., 6, 64056, 10.1039/C6RA12469K

Wu, 2016, Adv. Funct. Mater., 26, 6246, 10.1002/adfm.201601995

Zhang, 2013, Compos. Sci. Technol., 74, 1, 10.1016/j.compscitech.2012.09.016

Deng, 2014, J. Mater. Chem. A, 2, 10048, 10.1039/C4TA01073F

Shin, 2014, Carbon, 80, 396, 10.1016/j.carbon.2014.08.079