Light trapping in thin-film solar cell to enhance the absorption efficiency using FDTD simulation

Abu S. M. Mohsin1, Monica Mobashera1, Afrida Malik1, Maisha Rubaiat1, Mohammad Aminul Islam1
1Department of Electrical and Electronics Engineering, Nanotechnology, IoT and Machine Learning Research Group, Brac University, Dhaka, Bangladesh

Tóm tắt

Từ khóa


Tài liệu tham khảo

S.R. Wenham, Applied Photovoltaics (Routledge, Abinddon, 2011)

A. Shah et al., Thin-film silicon solar cell technology. Prog. Photovolt. Res. Appl. 12(2–3), 113–142 (2004)

J. Zhao et al., Efficient organic solar cells processed from hydrocarbon solvents. Nat. Energy 1(2), 15027 (2016)

C. Rockstuhl, S. Fahr, F. Lederer, Absorption enhancement in solar cells by localized plasmon polaritons. J. Appl. Phys. 104(12), 123102 (2008)

K. Catchpole, A. Polman, Plasmonic solar cells. Opt. Express 16(26), 21793–21800 (2008)

P. Spinelli et al., Plasmonic light trapping in thin-film Si solar cells. J. Opt. 14(2), 024002 (2012)

H. Tan, R. Santbergen, A.H. Smets, M. Zeman, Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles. Nano Lett. 12(8), 4070–4076 (2012)

I.K. Ding et al., Plasmonic dye-sensitized solar cells. Adv. Energy Mater. 1(1), 52–57 (2011)

M.K. Nazeeruddin, E. Baranoff, M. Grätzel, Dye-sensitized solar cells: a brief overview. Sol. Energy 85(6), 1172–1178 (2011)

S. Mathew et al., Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat. Chem. 6(3), 242–247 (2014)

E. Ramasamy, W.J. Lee, D.Y. Lee, J.S. Song, Portable, parallel grid dye-sensitized solar cell module prepared by screen printing. J. Power Sour. 165(1), 446–449 (2007)

K. Bergenek et al., Enhanced light extraction efficiency from AlGaInP thin-film light-emitting diodes with photonic crystals. Appl. Phys. Lett. 93(4), 041105 (2008)

S. Domínguez et al., Design, optimization and fabrication of 2D photonic crystals for solar cells. Photonics Nanostruct. Fundam. Appl. 11(1), 29–36 (2013)

S. Rühle, Tabulated values of the Shockley–Queisser limit for single junction solar cells. Sol. Energy 130, 139–147 (2016)

M.A. Green, Third Generation Photovoltaics: Advanced Solar Energy Conversion (Springer, Berlin, 2003)

S. Bose et al., A morphological and electronic study of ultrathin rear passivated Cu(In, Ga)Se2 solar cells. Thin Solid Films 671, 77–84 (2019)

M. De Zoysa, K. Ishizaki, Y. Tanaka, H. Sai, K. Matsubara, S. Noda, Enhanced efficiency of ultrathin (∼500 nm)-film microcrystalline silicon photonic crystal solar cells. Appl. Phys. Express 10(1), 012302 (2016)

R. Noufi, K. Zweibel, High-efficiency CdTe and CIGS thin-film solar cells: highlights and challenges. in 2006 IEEE 4th World Conference on Photovoltaic Energy Conference, 2006, vol. 1, pp. 317–320: IEEE.

G. Singh, J.S. Sekhon, S. Verma, Enhanced photocurrent in thin-film GaAs solar cells with embedded Al nanoparticles. Energy Sour. Part A Recovery Util. Environ. Eff. 42(7), 815–823 (2020)

N.P. Hylton et al., Loss mitigation in plasmonic solar cells: aluminium nanoparticles for broadband photocurrent enhancements in GaAs photodiodes, (in eng). Sci. Rep. 3, 2874–2874 (2013)

A. Kumar, Predicting efficiency of solar cells based on transparent conducting electrodes. J. Appl. Phys. 121(1), 014502 (2017)

A.S.M. Mohsin, M.B. Salim, Probing the Plasmon coupling, quantum yield, and effects of tip geometry of gold nanoparticle using analytical models and FDTD simulation. IEEE Photonics J. 10(3), 1–10 (2018)

A.S.M. Mohsin. Aggregation and uptake kinetics of gold nanoparticles in biological cells, using plasmon coupling and image correlation spectroscopy [PhD thesis] Melbourne: Swinburne University of Technology (2015). https://researchbank.swinburne.edu.au/items/0e74163b-8adc-4a05-8243-65b14d8a43c6/1/

A. S. M. Mohsin, M. B. Salim. Probing the intracellular refractive index and molecular interaction of gold nanoparticles in HeLa cells using single particle spectroscopy. Int. J. Nanomed. 13, 6019–6028 (2018). https://doi.org/10.2147/IJN.S175523

L. Zhu, A.P. Raman, S. Fan, Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody, (in eng). Proc. Natl. Acad. Sci. USA. 112(40), 12282–12287 (2015)

J. Gee, How to Make Solar Panels More Efficient in 2018 " EnergySage.” EnergySage Solar News Feed, EnergySage, 19 Sept. 2017. news.energysage.com/how-to-make-solar-panels-more-efficient

Y. Gassenbauer et al, Rear-surface passivation technology for crystalline silicon solar cells: A versatile process for mass production, in 2012 IEEE 38th Photovoltaic Specialists Conference (PVSC) PART 2, 2012, pp. 1–6.

Y. Da, Y. Xuan, Role of Surface Recombination in Affecting the Efficiency of Nanostructured Thin-Film Solar Cells 2013. Osapublishing, 2013, www.osapublishing.org/DirectPDFAccess/F1E0036E-C63D-5F6F-EA52FF38B5D1786D_270075/oe-21-S6-A1065

A.B. Taylor, P. Michaux, A.S.M. Mohsin, J.W.M. Chon, Electron-beam lithography of plasmonic nanorod arrays for multilayered optical storage. Opt. Express 22(11), 13234–13243 (2014)

A. Harry, P. Albert, Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205–213 (2010)

P. Papet et al., Pyramidal texturing of silicon solar cell with TMAH chemical anisotropic etching. Solar Energy Mater. Solar Cells 90(15), 2319–2328 (2006)

L. F. S. Faÿ, R. Schlüchter, U. Kroll, A. Shah., " Rough ZnO layers by LPCVD process and their effect in improving performances of amorphous and microcrystalline silicon solar cells int ’ l " Technical digest of the international PVSEC-14, Bangkok, Thailand, 2004, vol. PVSEC - 14, Energy 90 (2004) pp. 459–460, 2004.

Y. Tanaka et al., Photonic crystal microcrystalline silicon solar cells. Prog. Photovolt. Res. Appl. 23(11), 1475–1483 (2015)

P. Reineck, D. Brick, P. Mulvaney, U. Bach, Plasmonic hot electron solar cells: the effect of nanoparticle size on quantum efficiency. J Phys. Chem. Lett. 7(20), 4137–4141 (2016)

P. Mandal, S. Sharma, Progress in plasmonic solar cell efficiency improvement: a status review. Renew. Sustain. Energy Rev. 65, 537–552 (2016)

L. Yue, B. Yan, M. Attridge, Z. Wang, Light absorption in perovskite solar cell: Fundamentals and plasmonic enhancement of infrared band absorption. Sol. Energy 124, 143–152 (2016)

P. Sarkar, S. N. Surai, S. Panda, B. Maji, A. Mukhopadhyay, "Study on localized surface plasmon to improve photonic extinction in solar cell," in Contemporary Advances in Innovative and Applicable Information Technology: Springer, 2019, pp. 67–74.

M. Kalantari, A. Karimkhani, H. Saghaei, Ultra-wide mid-IR supercontinuum generation in As2S3 photonic crystal fiber by rods filling technique. Optik 158, 142–151 (2018)

H. Saghaei, M.K. Moravvej-Farshi, M. Ebnali-Heidari, M.N. Moghadasi, Ultra-wide mid-infrared supercontinuum generation in As 40 Se 60 chalcogenide fibers: solid core PCF versus SIF. IEEE J. Sel. Top. Quantum Electron. 22(2), 279–286 (2015)

H. Saghaei, M. Ebnali-Heidari, M.K. Moravvej-Farshi, Midinfrared supercontinuum generation via As 2 Se 3 chalcogenide photonic crystal fibers. Appl. Opt. 54(8), 2072–2079 (2015)

R.L. Savio et al., Enhanced 1.54 μm emission in Y-Er disilicate thin films on silicon photonic crystal cavities. Opt. Express 21(8), 10278–10288 (2013)

J. Poortmans, V. Arkhipov, Thin Film Solar Cells: Fabrication, Characterization and Applications (Wiley, New Jersey, 2006)

M.M.R. Lo Savio, A. Shakoor, P. Cardile, K. Welna, L.C. Andreani, D. Gerace, T.F. Krauss, L. O’Faolain, F. Priolo, M. Galli, Enhanced 1.54 μm emission in Y-Er disilicate thin films on silicon photonic crystal cavities. Opt. Express 21(8), 10278–10288 (2013)

U.W.P. Würfel, Physics of Solar Cells: From Basic Principles to Advancedconcepts, Second Updated and Expanded Edition (Wiley, New Jersey, 2009)

J. Nelson, The Physics of Solar Cells (Imperial College, UK, Default Book Series, 2003)

D.J. Coyle et al., Life prediction for CIGS solar modules part 2. Prog. Photovolt 16, 156–172 (2013). https://doi.org/10.1002/pip

H.S.A. Kowsari, Resonantly enhanced all-optical switching in microfibre Mach–Zehnder interferometers. Electron. Lett. 54, 229–231 (2018)

H. Saghaei, Supercontinuum source for dense wavelength division multiplexing in square photonic crystal fiber via fluidic infiltration approach. Radioengineering 26, 16–22 (2017)