Light logics and optimal reduction: Completeness and complexity

Information and Computation - Tập 209 - Trang 118-142 - 2011
Patrick Baillot1, Paolo Coppola2, Ugo Dal Lago3
1ENS Lyon, Université de Lyon, LIP (UMR 5668 CNRS-ENSL-INRIA-UCBL), 46 Allée d’Italie, 69364 Lyon Cedex 07, France
2Università di Udine, Dipartimento di Matematica e Informatica via delle Scienze 203 33100 Udine, Italy
3Università di Bologna, Dipartimento di Scienze dell’Informazione, Mura Anteo Zamboni 7, 40127 Bologna, Italy

Tài liệu tham khảo

Girard, 1998, Light linear logic, Information and Computation, 143, 175, 10.1006/inco.1998.2700 Asperti, 1998, Light affine logic, 300 Asperti, 2002, Intuitionistic light affine logic, ACM Transactions on Computational Logic, 3, 1, 10.1145/504077.504081 Coppola, 2006, Optimizing optimal reduction. A type inference algorithm for elementary affine logic, ACM Transactions on Computational Logic, 7, 219, 10.1145/1131313.1131315 Coppola, 2005, Principal typing for lambda calculus in elementary affine logic, Fundamenta Informaticae, 65, 87 Atassi, 2007, Verification of P time reducibility for system F terms: type inference in dual light affine logic, Logical Methods in Computer Science, 3, 1 Baillot, 2009, Light types for polynomial time computation in lambda calculus, Information and Computation, 207, 41, 10.1016/j.ic.2008.08.005 P. Coppola, U. Dal Lago, S. Ronchi Della Rocca, Elementary affine logic and the call-by-value lambda calculus, in: Proceedigs of TLCA 2005, LNCS, vol. 3461, Springer, 2005, pp. 131–145. Laurent, 2006, Obsessional cliques: a semantic characterization of bounded time complexity, 179 A.S. Murawski, C.-H.L. Ong, Discreet games, light affine logic and PTIME computation, in: Proceedings of CSL 2000, LNCS, vol. 1862, Springer, 2000, pp. 427–441. U. Dal Lago, M. Hofmann, Quantitative models and implicit complexity, in: Proceedings of FSTTCS 2005, LNCS, vol. 3821, Springer, 2005, pp. 189–200. Lamping, 1990, An algorithm for optimal lambda calculus reduction, 16 Pedicini, 2000, A parallel implementation for optimal lambda-calculus reduction, 3 Lawall, 1996, Optimality and inefficiency: what isn’t a cost model of the lambda calculus?, 92 Asperti, 2001, Parallel beta reduction is not elementary recursive, Information and Computation, 170, 49, 10.1006/inco.2001.2869 Asperti, 2004, (Optimal) duplication is not elementary recursive, Information and Computation, 193, 21, 10.1016/j.ic.2004.05.001 Asperti, 1998 Gonthier, 1992, The geometry of optimal lambda reduction, 15 J.-Y. Girard, Geometry of interaction 1: interpretation of system F, in: Proceedings Logic Colloquium 1988, 1989, pp. 221–260. Danos, 1995, Proof-nets and the Hilbert space, 307 Danos, 1999, Reversible, irreversible and optimal lambda-machines, Theoretical Computer Science, 227, 79, 10.1016/S0304-3975(99)00049-3 Dal Lago, 2006, Context semantics, linear logic and computational complexity, 169 A. Asperti, V. Danos, C. Laneve, L. Regnier, Paths in the lambda-calculus, in: Proceedings, Ninth Annual IEEE Symposium on Logic in Computer Science (LICS’94), IEEE Computer Society, 1994, pp. 426–436. V. Danos, La logique Linéaire appliquée à l’étude de divers processus de normalisation (principalement du λ-calcul), Ph.D. thesis, Université Paris VII, 1990. L. Regnier, Lambda-Calcul et réseaux, Ph.D. thesis, Université Paris VII, 1992. H. Mairson, From Hilbert spaces to Dilbert spaces: context semantics made simple, in: Proceedings of FSTTCS 2002, LNCS, vol. 2556, 2002, pp. 2–17. Guerrini, 1999, A general theory of sharing graphs, Theoretical Computer Science, 227, 99, 10.1016/S0304-3975(99)00050-X Guerrini, 2003, Coherence for sharing proof-nets, Theoretical Computer Science, 294, 379, 10.1016/S0304-3975(01)00162-1 Lafont, 1997, Interaction combinators, Information and Computation, 137, 69, 10.1006/inco.1997.2643 Dal Lago, 2006, Light affine logic, uniform encodings and polynomial time, Mathematical Structures in Computer Science, 16, 713, 10.1017/S0960129506005421 P. Baillot, K. Terui, A feasible algorithm for typing in elementary affine logic, in: Proceedings of TLCA 2005, LNCS, vol. 3461, Springer, 2005, pp. 55–70. Danos, 1989, The structure of multiplicatives, Archive for Mathematical Logic, 28, 181, 10.1007/BF01622878 Baillot, 2001, Elementary complexity and geometry of interaction, Fundamenta Informaticae, 45, 1 V. Atassi, Typing and optimal reduction for lambda calculus in variants of linear logic for implicit computational complexity, Ph.D. thesis, Université Paris 13, 2008.