Light-emitting diodes and gas exchange facilitation minimize hyperhydricity in Lippia grata: Physiological, biochemical and morpho anatomical aspects

South African Journal of Botany - Tập 135 - Trang 164-171 - 2020
Jhonatan Rafael Zárate-Salazar1, Lindomar Maria de Souza1, Marciana Bizerra de Morais2, Luiz Palhares Neto1, Lilia Willadino1, Artur Gouveia-Neto3, Cláudia Ulisses1
1Programa de Pós-graduação em Botânica (PPGB), Universidade Federal Rural de Pernambuco (UFRPE), CEP: 52171-900, Recife, PE, Brasil
2Programa de Pós-graduação em Ciências Naturais (PPGCN), Universidade do Estado do Rio Grande do Norte (UERN), CEP: 59600-000, Mossoró, RN, Brasil
3Universidade Federal de Alagoas (UFA), CEP: 57072-900, Maceió, AL, Brasil

Tài liệu tham khảo

Alvarez, 2012, Effects of light and ventilation on physiological parameters during in vitro acclimatization of Gevuina avellana Mol, Plant Cell Tissue Organ. Cult., 110, 93, 10.1007/s11240-012-0133-x Barbosa, 2013, Biochemical and morpho-anatomical analyses of strawberry vitro plants hyperhydric tissues affected by BA and gelling agents, Rev. Ceres, 60, 152, 10.1590/S0034-737X2013000200002 Batista, 2016, Light quality affects in vitro growth and essential oil profile in Lippia alba (Verbenaceae), In Vitro Cell. Dev. Biol. Plant, 10.1007/s11627-016-9761-x Bhatia, 2015, Technical glitches in micropropagation Bitu, 2014, Chemical composition of the essential oil of Lippia gracilis Schauer leaves and its potential as modulator of bacterial resistance, Nat. Prod. Res., 28, 399, 10.1080/14786419.2013.867343 Bitu, 2015, Effect of collection time on composition of essential oil of Lippia gracilis Schauer (Verbenaceae) growing in northeast Brazil, J. Essent. Oil Bear. Plants, 18, 647, 10.1080/0972060X.2014.935043 Bradford, 1976, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 72, 248, 10.1016/0003-2697(76)90527-3 Cruz, 2014, Water deficit and seasonality study on essential oil constituents of Lippia gracilis Schauer germplasm, Sci. World J, 10.1155/2014/314626 Esyanti, 2016, Efficiency evaluation of Vanda tricolor growth in temporary immerse system bioreactor and thin layer culture system, J. Adv. Agric. Technol., 3, 63 Fernandes, 2015, Fungitoxicity of plant extracts and essential oil of Lippia gracilis Schauer on the fungus Monosporascus cannonballus Pollack & Uecker, Summa Phytopathol., 41, 153, 10.1590/0100-5405/1978 Ferreira, 2017, Using LED lighting in somatic embryogenesis and micropropagation of an elite sugarcane variety and its effect on redox metabolism during acclimatization, Plant Cell Tissue Organ Cult., 128, 211, 10.1007/s11240-016-1101-7 Gupta, 2001, In vitro micropropagation of Lippia alba, Curr. Sci., 81, 206 Handel, 1968, Direct microdetermination of sucrose, Anal. Biochem., 22, 280, 10.1016/0003-2697(68)90317-5 Hazarika, 2010, Hyperhydricity - a bottleneck to micropropagation of plants, Acta Hortic., 865, 95, 10.17660/ActaHortic.2010.865.11 Johansen, 1940 José, 2019, Micropropagation and ploidy stability of Lippia lacunosa Mart. & Schauer: an endangered brazilian medicinal plant, Rev. Agricult. Neotropical, 6, 1, 10.32404/rean.v6i1.3203 Kassambara, A., Mundt, F., 2017. Factoextra: extract and visualize the results of multivariate data analyses. https://cran.r-project.org/package=factoextra Kozai, 2010, Photoautotrophic Micropropagation - environmental control for promoting photosynthesis, Propag. Ornam. Plants, 10, 188 Kraus, J.E., Arduin, M., 1997. Manual básico de métodos em morfologia vegetal. Rio de Janeiro: EDUR, 198 p. Lazzarini, 2019, Explant type and natural ventilation systems influence growth and content of carvacrol and thymol of Lippia gracilis Schauer. Plant Cell, Tissue Organ Cult., 137, 33, 10.1007/s11240-018-01548-5 Lazzarini, 2019, Growth regulators affect the dry weight production, carvacrol and thymol content of Lippia gracilis Schauer, Ind. Crops Prod., 35, 10.1016/j.indcrop.2018.11.070 Lê, 2008, FactoMineR: a R package for multivariate analysis, J. Stat. Softw., 25, 1, 10.18637/jss.v025.i01 Lichtenthaler, 1983, Determinations of total carotenoids and chlorophylls b of leaf extracts in different solvents, Biochem. Soc. Trans., 11, 591, 10.1042/bst0110591 Liu, 2017, Effects of multiple factors on hyperhydricity of Allium sativum L, Sci. Hortic., 217, 285, 10.1016/j.scienta.2017.02.010 Manivannan, 2015, Blue LED light enhances growth, phytochemical contents, and antioxidant enzyme activities of Rehmannia glutinosa cultured in vitro, Hortic. Environ. Biotechnol., 56, 105, 10.1007/s13580-015-0114-1 Mendiburu, F.D., 2019. agricolae: statistical procedures for agricultural research. https://cran.r-project.org/package=agricolae Mohamed, 2010, Influence of ventilation and sucrose on growth and leaf anatomy of micropropagated potato plantlets, Sci. Hortic., 123, 295, 10.1016/j.scienta.2009.09.014 Murashige, 1962, A revised medium for rapid growth and bio assays with tobacco tissue cultures, Physiol. Plant., 15, 12, 10.1111/j.1399-3054.1962.tb08052.x O'Leary, 2012, Species delimitation in Lippia Section Goniostachyium (Verbenaceae) using the phylogenetic species concept, Bot. J. Linn. Soc., 170, 197, 10.1111/j.1095-8339.2012.01291.x Palhares Neto, 2018, Controlling hyperhydricity in micropropagated plants of Lippia grata Schauer (Verbenaceae), a native species of a dry seasonal tropical forest with pharmacological potential, Braz. J. Bot., 41, 10.1007/s40415-018-0476-6 Palma, 2011, Aspectos morfofisiológicos e controle da hiperhidricidade na cultura de tecidos vegetais, Curr. Agric. Sci. Technol., 17 Peixoto, 2006, In vitro propagation of endangered Lippia filifolia Mart. & Schauer ex Schauer, In vitro Cell. Dev. Biol. Plant, 42, 558, 10.1079/IVP2006814 Resende, 2015, In vitro propagation and acclimatization of Lippia rotundifolia, na endemic species of Brazilian Campos Rupestres, Cien. Agron., 46, 582 R CORE TEAM, 2019. R: a language and environment for statistical computing. Austria, 2015. ISBN 3-900051-07-0: URLhttp://www.R-project.org. Rodrigues, 2017, Effects of flask sealing and growth regulators on in vitro propagation of neem (Azadirachta indica A. Juss.), In Vitro Cell. Dev. Biol. Plant, 48, 1 Salimena, F.R.G., Múlgura, M.E., 2015. Notas taxonômicas em Verbenaceae do Brasil. Rodriguésia, 66(1), 191-197. doi:10.1590/2175-7860201566110 Santos, 2016, Harvest time and geographical origin affect the essential oil of Lippia gracilis Schauer, Ind. Crops Prod., 79, 205, 10.1016/j.indcrop.2015.11.015 Sharakshane, A., 2016. White LED lighting for plants. LED lighting for urban agriculture, November. Cold Spring Harbor Laboratory. doi: 10.1101/215095 Silva, 2016, The effect of spectral light quality on in vitro culture of sugarcane, Acta Scientiarum. Biol. Sci., 38, 157, 10.4025/actascibiolsci.v38i2.31109 Streit, 2005, As clorofilas (The chlorophylls), Ciência Rural, 35, 748, 10.1590/S0103-84782005000300043 Tabart, 2015, Effect of polyamines and polyamine precursors on hyperhydricity in micropropagated apple shoots, Plant Cell Tissue Organ Cult., 120, 11, 10.1007/s11240-014-0568-3 Tian, 2016, Mitochondrial stress induces chromatin reorganization to promote longevity and UPR Mt, Cell, 165, 1197, 10.1016/j.cell.2016.04.011 Trivedi, 2017, Effect of various light-emitting diodes on growth and photosynthetic pigments of banana (Musa Acuminata) Cv. Grande Naine in vitro plantlets, Biotech Today, 7, 58, 10.5958/2322-0996.2017.00008.4 Trevisan, 2016, Composition of essential oils and ethanol extracts of the leaves of Lippia species: identification, quantitation and antioxidant capacity, Rec. Nat. Prod., 10, 485 Vieira, 2015, Light-emitting diodes (LED) increase the stomata formation and chlorophyll content in Musa acuminata (AAA) ‘Nanicão Corupá’ in vitro plantlets, Theor. Exp. Plant Physiol., 27, 91, 10.1007/s40626-015-0035-5 Vitta, 2002, Diversidade e conservação da flora nos Campos Rupestres da Cadeia do Espinhaço em Minas Gerais, 90 Yemm, 1954, The estimation of carbohydrates in plant extracts by anthrone, Biochem. J., 57, 508, 10.1042/bj0570508