Tăng cường khả năng hấp thụ ánh sáng của các hạt lơ lửng và phân bổ nguồn gốc của chúng tại khu vực châu Á và Biển Hoàng Hải

Springer Science and Business Media LLC - Tập 28 - Trang 8022-8035 - 2020
Feiyan Cao1, Xiaorong Zhang1, Chunyu Hao1, Shani Tiwari1, Bing Chen1,2
1Environment Research Institute, Shandong University, Qingdao, China
2Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

Tóm tắt

Sự tăng cường khả năng hấp thụ ánh sáng của carbon đen do trạng thái trộn lẫn của aerosol là một tham số quan trọng trong mô hình khí hậu, trong khi sự đóng góp của các nguồn phát thải vào yếu tố tăng cường vẫn chưa rõ ràng. Một chiến dịch nghiên cứu chính thức đã được tiến hành đồng thời tại một địa điểm ven biển của Trung Quốc (thành phố Thanh Đảo) và các khu vực hàng hải (Biển Hoàng Hải, SYS) vào tháng 8 và từ tháng 11 đến tháng 12 năm 2018. Sự tăng cường khả năng hấp thụ (EMAC) của carbon đen đã được tính toán bằng cách sử dụng một quy trình hòa tan dung môi hai bước, và các kết quả thu được là 1.96 ± 0.68, 1.64 ± 0.38 và 2.40 ± 0.76 cho mùa hè tại Thanh Đảo (QS), mùa thu tại Thanh Đảo (QA) và SYS, tương ứng. Mô hình phân tích ma trận tích cực (PMF) đã xác định sáu nguồn của PM2.5 và EMAC, bao gồm aerosol thứ cấp (với tỷ lệ đóng góp 27.9% và 29.2%), đốt than (24.9% và 20.2%), phát thải công nghiệp (15.2% và 25.4%), muối biển (6.9% và 9.6%), phát thải từ phương tiện giao thông (12.1% và 10.9%), và bụi đất (13.0% và 4.7%), tương ứng. Các nguồn này đã làm tăng khả năng hấp thụ carbon đen với các hệ số lần lượt là 1.25 ± 0.11 (aerosol thứ cấp), 1.21 ± 0.20 (phát thải công nghiệp), 1.17 ± 0.08 (đốt than), 1.09 ± 0.07 (phát thải từ phương tiện giao thông), 1.08 ± 0.17 (muối biển), và 1.04 ± 0.10 (bụi đất). Dựa trên sự tương quan giữa PM và các nguồn đóng góp EMAC, chúng tôi ước tính rằng aerosols thứ cấp, phát thải công nghiệp và đốt than đã đóng góp 74.8% vào sự tăng cường hấp thụ ở quy mô khu vực tại Trung Quốc. Phân bố nguồn cho EMAC cung cấp một chẩn đoán mới cho từng nguồn liên quan đến mô phỏng lực aerosol, với các thông tin đầu vào từ từng lĩnh vực phát thải.

Từ khóa


Tài liệu tham khảo

Bai Z, Cui XJ, Wang XF, Xie HJ, Chen B (2018) Light absorption of black carbon is doubled at Mt. Tai and typical urban area in North China. Sci Total Environ 635:1144–1151. https://doi.org/10.1016/j.scitotenv.2018.04.244 Bhardwaj P, Ki SJ, Kim YH, Woo JH, Song CK, Park SY, Song CH (2019) Recent changes of trans-boundary air pollution over the Yellow Sea: implications for future air quality in South Korea. Environ Pollut 247:401–409. https://doi.org/10.1016/j.envpol.2019.01.048 Bikkina S, Haque MM, Sarin M, Kawamura K (2019) Tracing the relative significance of primary versus secondary organic aerosols from biomass burning plumes over coastal ocean using sugar compounds and stable carbon isotopes. ACS Earth Space Chem 3:1471–1484. https://doi.org/10.1021/acsearthspacechem.9b00140 Bond TC, Bergstrom RW (2006) Light absorption by carbonaceous particles: an investigative review. Aerosol Sci Technol 40:27–67. https://doi.org/10.1080/02786820500421521 Bond TC, Streets DG, Yarber KF, Nelson SM, Woo JH, Klimont Z (2004) A technology-based global inventory of black and organic carbon emissions from combustion. J Geophys Res-Atmos 109:43. https://doi.org/10.1029/2003jd003697 Bond TC, Habib G, Bergstrom RW (2006) Limitations in the enhancement of visible light absorption due to mixing state. J Geophys Res-Atmos 111:13. https://doi.org/10.1029/2006jd007315 Bond TC, Doherty SJ, Fahey DW, Forster PM, Berntsen T, DeAngelo BJ, Flanner MG, Ghan S, Kärcher B, Koch D, Kinne S, Kondo Y, Quinn PK, Sarofim MC, Schultz MG, Schulz M, Venkataraman C, Zhang H, Zhang S, Bellouin N, Guttikunda SK, Hopke PK, Jacobson MZ, Kaiser JW, Klimont Z, Lohmann U, Schwarz JP, Shindell D, Storelvmo T, Warren SG, Zender CS (2013a) Bounding the role of black carbon in the climate system: a scientific assessment. J Geophys Res-Atmos 118:5380–5552. https://doi.org/10.1002/jgrd.50171 Bond TC, Doherty SJ, Fahey DW, Forster PM, Berntsen T, DeAngelo BJ, Flanner MG, Ghan S, Kärcher B, Koch D, Kinne S, Kondo Y, Quinn PK, Sarofim MC, Schultz MG, Schulz M, Venkataraman C, Zhang H, Zhang S, Bellouin N, Guttikunda SK, Hopke PK, Jacobson MZ, Kaiser JW, Klimont Z, Lohmann U, Schwarz JP, Shindell D, Storelvmo T, Warren SG, Zender CS (2013b) Bounding the role of black carbon in the climate system: a scientific assessment. J Geophys Res-Atmos 118:5380–5552. https://doi.org/10.1002/jgrd.50171 Brooks J et al (2019) Black carbon physical and optical properties across northern India during pre-monsoon and monsoon seasons. Atmos Chem Phys 19:13079–13096. https://doi.org/10.5194/acp-19-13079-2019 Chen Y, Xie S-D, Luo B, Zhai C-Z (2017) Particulate pollution in urban Chongqing of southwest China: historical trends of variation, chemical characteristics and source apportionment. Sci Total Environ 584:523–534. https://doi.org/10.1016/j.scitotenv.2017.01.060 Chen Q, Li J, Hua X, Jiang X, Mu Z, Wang M, Wang J, Shan M, Yang X, Fan X, Song J, Wang Y, Guan D, du L (2020) Identification of species and sources of atmospheric chromophores by fluorescence excitation-emission matrix with parallel factor analysis. Sci Total Environ 718. https://doi.org/10.1016/j.scitotenv.2020.137322 Cheng YF, Eichler H, Wiedensohler A, Heintzenberg J, Zhang YH, Hu M, Herrmann H, Zeng LM, Liu S, Gnauk T, Brüggemann E, He LY (2006) Mixing state of elemental carbon and non-light-absorbing aerosol components derived from in situ particle optical properties at Xinken in Pearl River Delta of China. J Geophys Res-Atmos 111:18. https://doi.org/10.1029/2005jd006929 Cheng Y, He KB, Zheng M, Duan FK, du ZY, Ma YL, Tan JH, Yang FM, Liu JM, Zhang XL, Weber RJ, Bergin MH, Russell AG (2011) Mass absorption efficiency of elemental carbon and water-soluble organic carbon in Beijing. China Atmos Chem Phys 11:11497–11510. https://doi.org/10.5194/acp-11-11497-2011 Cheng Y, He K-B, Engling G, Weber R, Liu J-M, Du Z-Y, Dong S-P (2017) Brown and black carbon in Beijing aerosol: implications for the effects of brown coating on light absorption by black carbon. Sci Total Environ 599:1047–1055. https://doi.org/10.1016/j.scitotenv.2017.05.061 Chernyshev VV et al (2019) Morphological and chemical composition of particulate matter in buses exhaust. Toxicol Rep 6:120–125. https://doi.org/10.1016/j.toxrep.2018.12.002 Chowdhury S, Dey S (2016) Cause-specific premature death from ambient PM2.5 exposure in India: estimate adjusted for baseline mortality. Environ Int 91:283–290. https://doi.org/10.1016/j.envint.2016.03.004 Chung SH, Seinfeld JH (2005) Climate response of direct radiative forcing of anthropogenic black carbon. J Geophys Res-Atmos 110. https://doi.org/10.1029/2004jd005441 Cohen AJ et al (2017) Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet 389:1907–1918. https://doi.org/10.1016/s0140-6736(17)30505-6 Cui X, Wang X, Yang L, Chen B, Chen J, Andersson A, Gustafsson O (2016) Radiative absorption enhancement from coatings on black carbon aerosols. Sci Total Environ 551:51–56. https://doi.org/10.1016/j.scitotenv.2016.02.026 Drosatou AD, Skyllakou K, Theodoritsi GN, Pandis SN (2019) Positive matrix factorization of organic aerosol: insights from a chemical transport model. Atmos Chem Phys 19:973–986. https://doi.org/10.5194/acp-19-973-2019 Fan JW, Wang Y, Rosenfeld D, Liu XH (2016) Review of aerosol-cloud interactions: mechanisms, significance, and challenges. J Atmos Sci 73:4221–4252. https://doi.org/10.1175/jas-d-16-0037.1 Favez O et al (2010) Inter-comparison of source apportionment models for the estimation of wood burning aerosols during wintertime in an Alpine city (Grenoble, France). Atmos Chem Phys 10:5295–5314. https://doi.org/10.5194/acp-10-5295-2010 Flowers BA, Dubey MK, Mazzoleni C, Stone EA, Schauer JJ, Kim SW, Yoon SC (2010) Optical-chemical-microphysical relationships and closure studies for mixed carbonaceous aerosols observed at Jeju Island; 3-laser photoacoustic spectrometer, particle sizing, and filter analysis. Atmos Chem Phys 10:10387–10398. https://doi.org/10.5194/acp-10-10387-2010 Gao J et al (2018) Temporal-spatial characteristics and source apportionment of PM2.5 as well as its associated chemical species in the Beijing-Tianjin-Hebei region of China. Environ Pollut 233:714–724. https://doi.org/10.1016/j.envpol.2017.10.123 Geng N, Wang J, Xu Y, Zhang W, Chen C, Zhang R (2013) PM2.5 in an industrial district of Zhengzhou, China: chemical composition and source apportionment. Particuology 11:99–109. https://doi.org/10.1016/j.partic.2012.08.004 Godoy M, Godoy JM, Artaxo P (2005) Aerosol source apportionment around a large coal fired power plant—thermoelectric complex Jorge Lacerda, Santa Catarina, Brazil. Atmos Environ 39:5307–5324. https://doi.org/10.1016/j.atmosenv.2005.05.033 Gu J, Bai Z, Li W, Wu L, Liu A, Dong H, Xie Y (2011) Chemical composition of PM2.5 during winter in Tianjin, China. Particuology 9:215–221. https://doi.org/10.1016/j.partic.2011.03.001 Gustafsson O, Ramanathan V (2016) Convergence on climate warming by black carbon aerosols. Proc Natl Acad Sci U S A 113:4243–4245. https://doi.org/10.1073/pnas.1603570113 Hao C, Chen B, Sanchez de la Campa AM, de la Rosa JD (2020) Increased industry contribution and atmospheric heavy metals from economic recovery in Spain. J Clean Prod:246. https://doi.org/10.1016/j.jclepro.2019.119024 Hopke PK (1991) An introduction to receptor modeling. Chemom Intell Lab Syst 10:21–43. https://doi.org/10.1016/0169-7439(91)80032-l Hsu C-Y et al (2017) Ambient PM2.5 in the residential area near industrial complexes: spatiotemporal variation, source apportionment, and health impact, Science of the Total Environment. 590:204–214. https://doi.org/10.1016/j.scitotenv.2017.02.212 Hu Z et al (2017) Light absorption of biomass burning and vehicle emission-sourced carbonaceous aerosols of the Tibetan Plateau. Environ Sci Pollut Res 24:15369–15378. https://doi.org/10.1007/s11356-017-9077-3 Hu J, Wang H, Zhang J, Zhang M, Zhang H, Wang S, Chai F (2019) PM2.5 pollution in Xingtai, China: chemical characteristics, source apportionment, and emission control measures. Atmosphere 10. https://doi.org/10.3390/atmos10030121 Huang X, Yun H, Gong Z, Li X, He L, Zhang Y, Hu M (2014) Source apportionment and secondary organic aerosol estimation of PM2.5 in an urban atmosphere in China. Sci China Earth Sci 57:1352–1362. https://doi.org/10.1007/s11430-013-4686-2 Jiang N, Guo Y, Wang Q, Kang P, Zhang R, Tang X (2017) Chemical composition characteristics of PM2.5 in three cities in Henan, Central China. Aerosol Air Qual Res 17:2367–2380. https://doi.org/10.4209/aaqr.2016.10.0463 Jiang N, Wang K, Yu X, Su F, Yin S, Li Q, Zhang R (2018) Chemical characteristics and source apportionment by two receptor models of size-segregated aerosols in an emerging megacity in China. Aerosol Air Qual Res 18:1375–1390. https://doi.org/10.4209/aaqr.2017.10.0413 Khalizov AF, Xue H, Wang L, Zheng J, Zhang R (2009) Enhanced light absorption and scattering by carbon soot aerosol internally mixed with sulfuric acid. J Phys Chem A 113:1066–1074. https://doi.org/10.1021/jp807531n Knox A et al (2009) Mass absorption cross-section of ambient black carbon aerosol in relation to chemical age. Aerosol Sci Technol 43:522–532. https://doi.org/10.1080/02786820902777207 Lan ZJ, Huang XF, Yu KY, Sun TL, Zeng LW, Hu M (2013) Light absorption of black carbon aerosol and its enhancement by mixing state in an urban atmosphere in South China. Atmos Environ 69:118–123. https://doi.org/10.1016/j.atmosenv.2012.12.009 Li CL, Bosch C, Kang S, Andersson A, Chen P, Zhang Q, Cong Z, Chen B, Qin D, Gustafsson Ö (2016) Sources of black carbon to the Himalayan-Tibetan Plateau glaciers. Nat Commun 7:7. https://doi.org/10.1038/ncomms12574 Li L, Yan D, Xu S, Huang M, Wang X, Xie S (2017) Characteristics and source distribution of air pollution in winter in Qingdao, eastern China. Environ Pollut 224:44–53. https://doi.org/10.1016/j.envpol.2016.12.037 Li J, Chen B, de la Campa AM S, Alastuey A, Querol X, de la Rosa JD (2018) 2005-2014 trends of PM10 source contributions in an industrialized area of southern Spain. Environ Pollut 236:570–579. https://doi.org/10.1016/j.envpol.2018.01.101 Li M et al (2019) Characteristics and source apportionment of metallic elements in PM2.5 at urban and suburban sites in Beijing: implication of emission reduction. Atmosphere 10. https://doi.org/10.3390/atmos10030105 Li JW, Chen QC, Hua XY, Chang T, Wang YQ (2020) Occurrence and sources of chromophoric organic carbon in fine particulate matter over Xi'an, China. Sci Total Environ 725:11. https://doi.org/10.1016/j.scitotenv.2020.138290 Liao W, Zhou J, Zhu S, Xiao A, Li K, Schauer JJ (2019) Characterization of aerosol chemical composition and the reconstruction of light extinction coefficients during winter in Wuhan, China. Chemosphere 241:125033–125033. https://doi.org/10.1016/j.chemosphere.2019.125033 Liu S, Aiken AC, Gorkowski K, Dubey MK, Cappa CD, Williams LR, Herndon SC, Massoli P, Fortner EC, Chhabra PS, Brooks WA, Onasch TB, Jayne JT, Worsnop DR, China S, Sharma N, Mazzoleni C, Xu L, Ng NL, Liu D, Allan JD, Lee JD, Fleming ZL, Mohr C, Zotter P, Szidat S, Prévôt ASH (2015) Enhanced light absorption by mixed source black and brown carbon particles in UK winter. Nat Commun:6. https://doi.org/10.1038/ncomms9435 Liu B et al (2017a) Characterization and source apportionment of PM2.5 based on error estimation from EPA PMF 5.0 model at a medium city in China. Environ Pollut 222:10–22. https://doi.org/10.1016/j.envpol.2017.01.005 Liu D et al (2017b) Black-carbon absorption enhancement in the atmosphere determined by particle mixing state. Nat Geosci 10:184-U132. https://doi.org/10.1038/ngeo2901 Liu B, Zhang J, Wang L, Liang D, Cheng Y, Wu J, Bi X, Feng Y, Zhang Y, Yang H (2018) Characteristics and sources of the fine carbonaceous aerosols in Haikou, China. Atmos Res 199:103–112. https://doi.org/10.1016/j.atmosres.2017.08.022 Liu K, Wang F, Li J, Tiwari S, Chen B (2019) Assessment of trends and emission sources of heavy metals from the soil sediments near the Bohai Bay. Environ Sci Pollut Res Int 26:29095–29109. https://doi.org/10.1007/s11356-019-06130-w Ma Y, Huang C, Jabbour H, Zheng Z, Wang Y, Jiang Y, Zhu W, Ge X, Collier S, Zheng J (2020) Mixing state and light absorption enhancement of black carbon aerosols in summertime Nanjing. China Atmos Environ 222:117141. https://doi.org/10.1016/j.atmosenv.2019.117141 Paatero P (1997) Least squares formulation of robust non-negative factor analysis Chemom Intell Lab Syst 37:23-35 doi:https://doi.org/10.1016/s0169-7439(96)00044-5 Peng JF et al (2016) Markedly enhanced absorption and direct radiative forcing of black carbon under polluted urban environments. Proc Natl Acad Sci U S A 113:4266–4271. https://doi.org/10.1073/pnas.1602310113 Pope CA, Dockery DW (2006) Health effects of fine particulate air pollution: lines that connect. J Air Waste Manage Assoc 56:709–742. https://doi.org/10.1080/10473289.2006.10464485 Ram K, Sarin MM (2009) Absorption coefficient and site-specific mass absorption efficiency of elemental carbon in aerosols over urban, rural, and high-altitude sites in India. Environ Sci Technol 43:8233–8239. https://doi.org/10.1021/es9011542 Ramanathan V, Carmichael G (2008) Global and regional climate changes due to black carbon. Nat Geosci 1:221–227. https://doi.org/10.1038/ngeo156 Ramanathan V, Crutzen PJ, Kiehl JT, Rosenfeld D (2001) Atmosphere—aerosols, climate, and the hydrological cycle. Science 294:2119–2124. https://doi.org/10.1126/science.1064034 Sarkar C, Sinha V, Sinha B, Panday AK, Rupakheti M, Lawrence MG (2017) Source apportionment of NMVOCs in the Kathmandu Valley during the SusKat-ABC international field campaign using positive matrix factorization. Atmos Chem Phys 17:8129–8156. https://doi.org/10.5194/acp-17-8129-2017 Sarkar C, Roy A, Chatterjee A, Ghosh SK, Raha S (2019) Factors controlling the long-term (2009-2015) trend of PM2.5 and black carbon aerosols at eastern Himalaya, India. Sci Total Environ 656:280–296. https://doi.org/10.1016/j.scitotenv.2018.11.367 Satish R, Rastogi N (2019) On the use of brown carbon spectra as a tool to understand their broader composition and characteristics: a case study from crop-residue burning samples. ACS Omega 4:1847–1853. https://doi.org/10.1021/acsomega.8b02637 Seinfeld JH et al (2016) Improving our fundamental understanding of the role of aerosol-cloud interactions in the climate system. Proc Natl Acad Sci U S A 113:5781–5790. https://doi.org/10.1073/pnas.1514043113 Shi G et al (2018) Source apportionment for fine particulate matter in a Chinese city using an improved gas-constrained method and comparison with multiple receptor models. Environ Pollut 233:1058–1067. https://doi.org/10.1016/j.envpol.2017.10.007 Shiraiwa M, Kondo Y, Iwamoto T, Kita K (2010) Amplification of light absorption of black carbon by organic coating. Aerosol Sci Technol 44:46–54. https://doi.org/10.1080/02786820903357686 Silva RA, Rogers K, Buckley TJ (2018) Advancing environmental epidemiology to assess the beneficial influence of the natural environment on human health and well-being. Environ Sci Technol 52:9545–9555. https://doi.org/10.1021/acs.est.8b01781 Sowlat MH, Hasheminassab S, Sioutas C (2016) Source apportionment of ambient particle number concentrations in central Los Angeles using positive matrix factorization (PMF). Atmos Chem Phys 16:4849–4866. https://doi.org/10.5194/acp-16-4849-2016 Srivastava D, Favez O, Perraudin E, Villenave E, Albinet A (2018) Comparison of measurement-based methodologies to apportion secondary organic carbon (SOC) in PM2.5: a review of recent studies. Atmosphere 9:55. https://doi.org/10.3390/atmos9110452 Tao J, Zhang L, Cao J, Zhang R (2017) A review of current knowledge concerning PM2.5 chemical composition, aerosol optical properties and their relationships across China. Atmos Chem Phys 17:9485–9518. https://doi.org/10.5194/acp-17-9485-2017 Tian PF et al (2018a) Radiative absorption enhancement of dust mixed with anthropogenic pollution over East Asia. Atmos Chem Phys 18:7815–7825. https://doi.org/10.5194/acp-18-7815-2018 Tian Y et al (2018b) Spatial, seasonal and diurnal patterns in physicochemical characteristics and sources of PM2.5 in both inland and coastal regions within a megacity in China. J Hazard Mater 342:139–149. https://doi.org/10.1016/j.jhazmat.2017.08.015 Tiwari S, Srivastava AK, Singh AK, Singh S (2015) Identification of aerosol types over Indo-Gangetic Basin: implications to optical properties and associated radiative forcing. Environ Sci Pollut Res 22:12246–12260. https://doi.org/10.1007/s11356-015-4495-6 Tiwari S et al (2016) Aerosol chemical characterization and role of carbonaceous aerosol on radiative effect over Varanasi in central Indo-Gangetic Plain. Atmos Environ 125:437–449. https://doi.org/10.1016/j.atmosenv.2015.07.031 Tiwari S, Kun L, Chen B (2020) Spatial variability of sedimentary carbon in South Yellow Sea, China: impact of anthropogenic emission and long-range transportation. Environ Sci Pollut Res 27:23812–23823. https://doi.org/10.1007/s11356-020-08686-4 Turap Y, Talifu D, Wang X, Abulizi A, Maihemuti M, Tursun Y, Ding X, Aierken T, Rekefu S (2019) Temporal distribution and source apportionment of PM2.5 chemical composition in Xinjiang, NW-China. Atmos Res 218:257–268. https://doi.org/10.1016/j.atmosres.2018.12.010 Wang Y, Jia C, Tao J, Zhang L, Liang X, Ma J, Gao H, Huang T, Zhang K (2016) Chemical characterization and source apportionment of PM2.5 in a semi-arid and petrochemical-industrialized city, Northwest China Sci Total Environ 573:1031-1040 doi:https://doi.org/10.1016/j.scitotenv.2016.08.179 Wang W, Yu J, Cui Y, He J, Xue P, Cao W, Ying H, Gao W, Yan Y, Hu B, Xin J, Wang L, Liu Z, Sun Y, Ji D, Wang Y (2018) Characteristics of fine particulate matter and its sources in an industrialized coastal city, Ningbo, Yangtze River Delta, China. Atmos Res 203:105–117. https://doi.org/10.1016/j.atmosres.2017.11.033 Wang JF et al (2019) Characterization of black carbon-containing fine particles in Beijing during wintertime. Atmos Chem Phys 19:447–458. https://doi.org/10.5194/acp-19-447-2019 Wei Z, Wang LT, Chen MZ, Zheng Y (2014) The 2013 severe haze over the Southern Hebei, China: PM2.5 composition and source apportionment. Atmos Pollut Res 5:759–768. https://doi.org/10.5094/APR.2014.085 Wei XY, Liu M, Yang J, du WN, Sun X, Huang YP, Zhang X, Khalil SK, Luo DM, Zhou YD (2019) Characterization of PM2.5-bound PAHs and carbonaceous aerosols during three-month severe haze episode in Shanghai, China: Chemical composition, source apportionment and long-range transportation Atmos Environ 203:1-9 doi:https://doi.org/10.1016/j.atmosenv.2019.01.046 Xu HM, Cao J, Chow JC, Huang RJ, Shen Z, Chen LWA, Ho KF, Watson JG (2016) Inter-annual variability of wintertime PM2.5 chemical composition in Xi'an, China: evidences of changing source emissions. Sci Total Environ 545:546–555. https://doi.org/10.1016/j.scitotenv.2015.12.070 Xu H et al (2019) Spatial and temporal distribution, chemical characteristics, and sources of ambient particulate matter in the Beijing-Tianjin-Hebei region. Sci Total Environ 658:280–293. https://doi.org/10.1016/j.scitotenv.2018.12.164 Yang L et al (2013) Source identification and health impact of PM2.5 in a heavily polluted urban atmosphere in China. Atmos Environ 75:265–269. https://doi.org/10.1016/j.atmosenv.2013.04.058 Yao L et al (2016) Sources apportionment of PM2.5 in a background site in the North China Plain. Sci Total Environ 541:590–598. https://doi.org/10.1016/j.scitotenv.2015.09.123 Zhang R et al (2013) Chemical characterization and source apportionment of PM2.5 in Beijing: seasonal perspective. Atmos Chem Phys 13:7053–7074. https://doi.org/10.5194/acp-13-7053-2013 Zhang JJ, Tong L, Peng CH, Zhang HL, Huang ZW, He J, Xiao H (2019) Temporal variability of visibility and its parameterizations in Ningbo, China. J Environ Sci 77:372–382. https://doi.org/10.1016/j.jes.2018.09.015 Zhao Y, Feng L, Shang B, Li J, Lv G, Wu Y (2019a) Pollution characterization and source apportionment of day and night PM2.5 samples in urban and suburban communities of Tianjin (China). Arch Environ Contam Toxicol 76:591–604. https://doi.org/10.1007/s00244-019-00614-z Zhao Z, Lv S, Zhang Y, Zhao Q, Shen L, Xu S, Yu J, Hou J, Jin C (2019b) Characteristics and source apportionment of PM2.5 in Jiaxing, China. Environ Sci Pollut Res 26:7497–7511. https://doi.org/10.1007/s11356-019-04205-2