Ligand migration and hexacoordination in type 1 non-symbiotic rice hemoglobin

Nitin Kumar Bisht1,2,3, Stefania Abbruzzetti3,1, Sheetal Uppal2, Stefano Bruno4, Francesca Spyrakis5,6, Andrea Mozzarelli6,4, Cristiano Viappiani7,1, Suman Kundu2
1Dipartimento di Fisica, Università degli Studi di Parma, Parma, Italy
2Department of Biochemistry, University of Delhi South Campus, New Delhi, India
3Dipartimento di Biotecnologie, Università degli Studi di Verona, Italy
4Dipartimento di Biochimica e Biologia Molecolare, Università degli Studi di Parma, Parma, Italy
5Dipartimento di Chimica Generale ed Inorganica, Chimica Analitica, Chimica Fisica, Università degli Studi di Parma, Italy
6INBB, Biostructures and Biosystems National Institute, Italy
7NEST, Istituto Nanoscienze-CNR, Italy

Tóm tắt

Từ khóa


Tài liệu tham khảo

Appleby, 1984, Leghemoglobin and rhizobium respiration, Annu. Rev. Plant Physiol., 35, 443, 10.1146/annurev.pp.35.060184.002303 Bogusz, 1988, Functioning hemoglobin genes in non-nodulating plants, Nature, 331, 178, 10.1038/331178a0 Arredondo-Peter, 1997, Rice hemoglobins gene cloning, analysis, and O2-binding kinetics of a recombinant protein synthesized in Escherichia coli, Plant Physiol., 115, 1259, 10.1104/pp.115.3.1259 Trevaskis, 1997, Two hemoglobin genes in Arabidopsis thaliana: the evolutionary origins of leghemoglobins, Proc. Natl. Acad. Sci. U. S. A., 94, 12230, 10.1073/pnas.94.22.12230 Wang, 2003, Two tomato non-symbiotic haemoglobin genes are differentially expressed in response to diverse changes in mineral nutrient status, Plant Cell Environ., 26, 673, 10.1046/j.1365-3040.2003.01002.x Hunt, 2001, Expression and evolution of functionally distinct haemoglobin genes in plants, Plant Mol. Biol., 47, 677, 10.1023/A:1012440926982 Dordas, 2009, Nonsymbiotic hemoglobins and stress tolerance in plants, Plant Sci., 176, 433, 10.1016/j.plantsci.2009.01.003 Smagghe, 2009, Correlations between oxygen affinity and sequence classifications of plant hemoglobins, Biopolymers, 1083, 10.1002/bip.21256 Wang, 2000, Genomic analysis of a nutrient response in Arabidopsis reveals diverse expression patterns and novel metabolic and potential regulatory genes induced by nitrate, Plant Cell, 12, 1491, 10.1105/tpc.12.8.1491 Nie, 1997, Mitochondrial respiration and hemoglobin gene expression in barley aleurone tissue, Plant Physiol., 114, 835, 10.1104/pp.114.3.835 Smagghe, 2008, NO dioxygenase activity in hemoglobins is ubiquitous in vitro, but limited by reduction in vivo, PLoS ONE, 3, e2039, 10.1371/journal.pone.0002039 Perazzolli, 2004, Non-symbiotic hemoglobin AHb1 modulates nitric oxyde bioactivity in Arabidopsis thaliana, Plant Cell, 16, 2785, 10.1105/tpc.104.025379 Perazzolli, 2006, Modulation of nitric oxide bioactivity by plant haemoglobins, J. Exp. Bot., 57, 479, 10.1093/jxb/erj051 Igamberdiev, 2006, Nitric oxide scavenging by barley hemoglobin is facilitated by a monodehydroascorbate reductase-mediated ascorbate reduction of methemoglobin, Planta, 223, 1033, 10.1007/s00425-005-0146-3 Bruno, 2007, The reactivity with CO of AHb1 and AHb2 from Arabidopsis thaliana is controlled by the distal His E7 and internal hydrophobic cavities, J. Am. Chem. Soc., 129, 2880, 10.1021/ja066638d Smagghe, 2006, Role of phenylalanine B10 in plant nonsymbiotic hemoglobins, Biochemistry, 45, 9735, 10.1021/bi060716s F. Spyrakis, S. Faggiano, S. Abbruzzetti, P. Dominici, E. Cacciatori, A. Astegno, E. Droghetti, A. Feis, G. Smulevich, S. Bruno, A. Mozzarelli, P. Cozzini, C. Viappiani, A. Bidon-Chanal, F.J. Luque, Histidine E7 dynamics modulates ligand exchange between distal pocket and solvent in AHb1 from Arabidopsis thaliana, J. Phys. Chem. B (in preparation). Brunori, 2005, Neuroglobin, nitric oxide, and oxygen: functional pathways and conformational changes, Proc. Natl. Acad. Sci. U. S. A., 102, 8483, 10.1073/pnas.0408766102 Vallone, 2004, The structure of murine neuroglobin: novel pathways for ligand migration and binding, Proteins, 56, 85, 10.1002/prot.20113 Faggiano, 2009, Structural plasticity and functional implications of internal cavities in distal mutants of Type 1 non-symbiotic hemoglobin AHb1 from Arabidopsis thaliana, J. Phys. Chem. B, 113, 16028, 10.1021/jp9074477 Bruno, 2007, Different roles of protein dynamics and ligand migration in non-symbiotic hemoglobins AHb1 and AHb2 from Arabidopsis thaliana, Gene, 398, 224, 10.1016/j.gene.2007.02.042 Abbruzzetti, 2006, Monitoring haem proteins at work with nanosecond laser flash photolysis, Photochem. Photobiol. Sci., 5, 1109, 10.1039/b610236k Abbruzzetti, 2007, Ligand migration in non symbiotic hemoglobin AHb1 from Arabidopsis thaliana, J. Phys. Chem. B, 111, 12582, 10.1021/jp074954o Abbruzzetti, 2001, Enhanced geminate ligand rebinding upon photo-dissociation of silica gel-embedded myoglobin-CO, Chem. Phys. Lett., 346, 430, 10.1016/S0009-2614(01)01027-2 Abbruzzetti, 2001, Functional characterization of heme proteins encapsulated in wet nanoporous silica gels, J. Nanosci. Nanotech., 1, 407, 10.1166/jnn.2001.058 Sottini, 2004, CO rebinding kinetics to myoglobin- and R state hemoglobin-doped silica gels in the presence of glycerol, J. Phys. Chem. B, 108, 8475, 10.1021/jp049472g Sottini, 2005, Evidence for two geminate rebinding states following laser photolysis of R state hemoglobin encapsulated in wet silica gels, J. Phys. Chem. B, 109, 11411, 10.1021/jp0514224 Sottini, 2005, Determination of microscopic rate constants for CO binding and migration in myoglobin encapsulated in silica gels, J. Phys. Chem. B, 109, 19523, 10.1021/jp054098l Sottini, 2005, Geminate rebinding in R state hemoglobin: kinetic and computational evidence for multiple hydrophobic pockets, J. Am. Chem. Soc., 127, 17427, 10.1021/ja056101k Khan, 2000, Sol–gel trapping of functional intermediates of hemoglobin: geminate and bimolecular recombination studies, Biochemistry, 39, 16099, 10.1021/bi000536x Samuni, 2002, Spectroscopically and kinetically distinct conformational populations of sol–gel-encapsulated carbonmonoxy myoglobin, J. Biol. Chem., 277, 25783, 10.1074/jbc.M200301200 Samuni, 2003, Kinetic modulation in carbonmonoxy derivatives of truncated hemoglobins. The role of distal heme pocket residues and extended apolar tunnel, J. Biol. Chem., 278, 27241, 10.1074/jbc.M212634200 Dantsker, 2005, The position 68(E11) side chain in myoglobin regulates ligand capture, bond formation with heme iron, and internal movement into the Xe cavities, J. Biol. Chem., 280, 38740, 10.1074/jbc.M506333200 Samuni, 2006, Modulation of reactivity and conformation within the t-quaternary state of human hemoglobin: the combined use of mutagenesis and sol–gel encapsulation, Biochemistry, 45, 2820, 10.1021/bi050010i Bettati, 1997, T state hemoglobin binds oxygen noncooperatively with allosteric effects of protons, inositol hexaphosphate and chloride, J. Biol. Chem., 272, 32050, 10.1074/jbc.272.51.32050 Steinbach, 2002, Inferring lifetime distributions from kinetics by maximizing entropy using a bootstrapped model, J. Chem. Inf. Comput. Sci., 42, 1476, 10.1021/ci025551i Steinbach, 2002, Analysis of kinetics using a hybrid maximum-entropy/nonlinear-least-squares method: application to protein folding, Biophys. J., 82, 2244, 10.1016/S0006-3495(02)75570-7 Abbruzzetti, 2008, 437, 329 Hoy, 2007, Plant hemoglobins: a molecular fossil record for the evolution of oxygen transport, J. Mol. Biol., 371, 168, 10.1016/j.jmb.2007.05.029 Keil, 2003, Pattern recognition strategies for molecular surfaces: III. Binding site prediction with a neural network, J. Comput. Chem., 25, 779, 10.1002/jcc.10361 Binkowski, 2003, CASTp: computed atlas of surface topography of proteins, Nucleic Acids Res., 31, 3352, 10.1093/nar/gkg512 Nicholls, 1991, Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons, Proteins, 11, 281, 10.1002/prot.340110407 Goodford, 1985, A computational procedure for determining energetically favourable binding sites on biologically important macromolecules, J. Med. Chem., 28, 849, 10.1021/jm00145a002 Hargrove, 2000, Crystal structure of a nonsymbiotic plant hemoglobin, Structure, 8, 1005, 10.1016/S0969-2126(00)00194-5 Scott, 2001, Mapping the pathways for O2 entry into and exit from myoglobin, J. Biol. Chem., 276, 5177, 10.1074/jbc.M008282200 Olson, 2007, Ligand pathways in myoglobin: a review of Trp cavity mutations, IUBMB Life, 59, 552, 10.1080/15216540701230495 Harutyunyan, 1995, The structure of deoxy- and oxy-leghaemoglobin from lupin, J. Mol. Biol., 251, 104, 10.1006/jmbi.1995.0419 Pesce, 2003, Human brain neuroglobin structure reveals a distinct mode of controlling oxygen affinity, Structure, 11, 1087, 10.1016/S0969-2126(03)00166-7 Brunori, 2001, Cavities and packing defects in the structural dynamics of myoglobin, EMBO Rep., 2, 674, 10.1093/embo-reports/kve159 deSanctis, 2004, Crystal structure of cytoglobin: the fourth globin type discovered in man displays heme hexa-coordination, J. Mol. Biol., 336, 917, 10.1016/j.jmb.2003.12.063 Lim, 1993, Nonexponential protein relaxation: dynamics of conformational change in myoglobin, Proc. Natl. Acad. Sci. U. S. A., 90, 5801, 10.1073/pnas.90.12.5801 Murray, 1988, The effect of quaternary structure on the kinetics of conformational changes and nanosecond rebinding of carbon monoxide to hemoglobin, Proc. Natl. Acad. Sci. U. S. A., 85, 2151, 10.1073/pnas.85.7.2151 Hankeln, 2005, Neuroglobin and cytoglobin in search of their role in the vertebrate globin family, J. Inorg. Biochem., 99, 110, 10.1016/j.jinorgbio.2004.11.009 Olson, 1996, Kinetic pathways and barriers for ligand binding to myoglobin, J. Biol. Chem., 271, 17593, 10.1074/jbc.271.30.17593 Nienhaus, 2008, Structural dynamics of myoglobin: FTIR-TDS study of NO migration and binding, Biochemistry, 47, 935, 10.1021/bi701935v Brantley, 1993, The mechanism of autoxidation of myoglobin, J. Biol. Chem., 268, 6995, 10.1016/S0021-9258(18)53138-0 Liong, 2001, Waterproofing the heme pocket. Role of proximal amino acid side chains in preventing hemin loss from myoglobin, J. Biol. Chem., 276, 9093, 10.1074/jbc.M008593200 Brunori, 2001, Nitric oxide, cytochrome-c oxidase, and myoglobin, TIBS, 26, 21 Brunori, 2001, Nitric oxide moves myoglobin centre stage, TIBS, 26, 209 Bidon-Chanal, 2006, Ligand-induced dynamical regulation of NO conversion in Mycobacterium tuberculosis truncated-hemoglobin-N, Proteins, 64, 457, 10.1002/prot.21004 Marti, 2008, Mechanism of product release in NO detoxification from Mycobacterium tuberculosis truncated hemoglobin N, J. Am. Chem. Soc., 130, 1688, 10.1021/ja076853+ Abbruzzetti, 2009, Ligand migration through the internal hydrophobic cavities in human neuroglobin, Proc. Natl. Acad. Sci. U. S. A., 106, 18984, 10.1073/pnas.0905433106