Lifshitz tails for random perturbations of periodic Schrödinger operators
Tóm tắt
The present paper is a non-exhaustive review of Lifshitz tails for random perturbations of periodic Schrödinger operators. It is not our goal to review the whole literature on Lifshitz tails; we will concentrate on a single model, the continuous Anderson model.
Tài liệu tham khảo
Agmon S, On positive solutions of elliptic operators with periodic coefficients in L2(Rn), spectral results and extension to elliptic operators on Riemannian manifolds, in: Differential equations (eds) I Knowles and R Lewis (North-Holland: Birmingham) (1984)
Barbaroux J-M, Combes J-M and Hislop P, Landau hamiltonians with unbounded random potentials.Lett. Math. Phys. 40(4) (1997) 355–369
Birman M Sh, Perturbations of operators with periodic coefficients, in: Schrödinger Operators: Standard and non-standard (Dubna) (1988)
Carmona R and Lacroix J, Spectral Theory of Random Schrödinger Operators (Birkhäuser: Basel) (1990)
Dembo A and Zeitouni O, Large deviation techniques and applications. (Boston: Jones and Bartlett Publishers) (1992)
Deuschel J-M and Stroock D, Large deviations, Volume 137 of Pure and Applied Mathematics Academic Press (1989)
Eastham M, The spectral theory of periodic differential operators (Edinburgh: Scottish Academic Press) (1973)
Ghribi F, Asymptotique de Lifshitz pour des opérateurs de Schrödinger à champ magnétique aléatoire. Thèse Université Paris 13, (2000) en préparation
Helffer B and Mohamed A, Asymptotic of the density of states for the Schrödinger operator with periodic electric potential.Duke Math. J. 92(1) (1998) 1–60
Kirsch W, Random Schrödinger operators, in Schrödinger Operators, A Jensen and H Holden (eds) number 345 in Lecture Notes in Physics, Berlin (1989) Springer Verlag, ProceedingsSonderborg, Denmark (1988)
Kirsch W and Martinelli F, On the spectrum of Schrödinger operators with a random potential,Comm. Math. Phys. 85 (1982) 329–350
Kirsch W and Martinelli F, Large deviations and Lifshitz singularities of the integrated density of states of random hamiltonians,Comm. Math. Phys. 89 (1983) 27–40
Kirsch W and Simon B, Lifshitz tails for the Anderson model,J. Stat. Phys. 38 (1985) 65–76
Kirsch W, Stollmann P and Stolz G, Localization for random perturbations of periodic Schrödinger operators,Random Oper. Stochastic Equ. 6(3) (1998) 241–268
Klopp F, Localization for some continuous random Schrödinger operators,Comm. Math. Phys. 167 (1995) 553–570
Klopp F, Band edge behaviour for the integrated density of states of random Jacobi matrices in dimension 1,J. Stat. Phys. 90(3-4) (1998) 927–947
Klopp F and Ralston J, Endpoints of the spectrum of periodic operators are generically simple,Math. Appl. Anal. 7(3) (2000) 459–464
Klopp F and Wolff T, Lifshitz tails for 2-dimensional random Schrödinger operators, in preparation (2000)
Klopp F, Internal Lifshitz tails for random perturbations of periodic Schrödinger operators,Duke Math. J. 98(2) (1999) 335–396
Klopp F, Internal Lifshitz tails for Schrödinger operators with random potentials,J. Math. Phys. to appear in (2002)
Klopp F, Precise high energy asymptotics for the integrated density of states of an unbounded random Jacobi matrix,Rev. Math. Phys. 12(4) (2000) 575–620
Klopp F and Pastur L, Lifshitz tails for random Schrödinger operators with negative singular Poisson potential,Comm. Math. Phys. 206(1) (1999) 57–103
Kuchment P, Floquet theory for partial differential equations, volume 60 of Operator Theory: Advances and Applications (Birkhäuser: Basel) (1993)
Lifshitz I M, Structure of the energy spectrum of impurity bands in disordered solid solutions,Sov. Phys. JETP 17 (1963) 1159–1170
Lifshitz I M, Energy spectrum structure and quantum states of disordered condensed systems,Sov. Phys. Usp. 7 (1965) 549–573
Lifshitz I M, Gredeskul S A and Pastur L A, Introduction to the theory of disordered systems, (New-York: Wiley) (1988)
McKean H and vanMoerbeke P, The spectrum of Hill’s equation,Invent. Math. 30 (1975) 217–274
McKean H P and Trubowitz E, Hill’s surfaces and their theta functions,Bull. Am. Math. Soc. 84(6) (1978) 1042–1085
Mezincescu G, Lifshitz singularities for periodic operators plus random potentials,J. Stat. Phys. 49 (1987) 1081–1090
Mezincescu G, Internal Lifshits singularities for one dimensional Schrödinger operators,Comm. Math. Phys. 158 (1993) 315–325
Najar H, Asymptotique de la densité d’états intégrée des modèles aléatoires continus, Thèse Université Paris 13 (2000) en préparation
Nakao S, On the spectral distribution of the Schrödinger operator with random potential,Jpn. J. Math. 3 (1977) 117–139
Pastur L, Behaviour of some Wiener integrals ast → + ∞ and the density of states of the Schrödinger equation with a random potential,Teor. Mat. Fiz. 32 (1977) 88–95 (in Russian)
Pastur L and Figotin A, Spectra of Random and Almost-Periodic Operators (Berlin: Springer Verlag) (1992)
Phong D H and Stein E M, The Newton polyhedron and oscillatory integral operators,Acta Math. 179(1) (1997) 105–152
Reed M and Simon B, Methods of Modern Mathematical Physics, Vol IV: Analysis of Operators (New-York: Academic Press) (1978)
Saad O, Comportement en grandes énergies de la densité d’états du modèle d’Anderson non borné, PhD thesis, Université de Paris 13, 1999, en préparation
Sjöstrand J, Microlocal analysis for periodic magnetic Schrödinger equation and related questions, in: Microlocal analysis and applications, volume 1495 of Lecture Notes in Mathematics (Berlin: Springer Verlag) (1991)
Skriganov M M, Proof of the Bethe-Sommerfeld conjecture in dimension 2,Dokl. Akad. Nauk. SSSR 248(1) (1979) 39–42
Stollmann P, Lifshitz asymptotics via linear coupling of disorder,Math. Phys. Anal. Geom. 2(3) (1999) 279–289
Sznitman A-S, Brownian motion, obstacles and random media (Berlin: Springer-Verlag) (1998)
Varchenko V, Newton polyhedra and estimations of oscillatory integrals,Funct. Anal. Appl. 8 (1976) 175–196