Life cycle of mesoscale convective systems
Tóm tắt
Radar observations of the evolution and hierarchy of Cb clouds in different regions of the Earth are generalized to present the concept of a life cycle of a mesoscale convective system; during the life cycle, the separate Cb clouds develop into hierarchic coordinated mesoscale clusters, which recurrently originate and are localized in fixed places in the system which moves as a unit. The rising dominant clusters generate quasi-periodic oscillations of maximum intensity and wavelike space structure of the precipitation field. The methodological principles of the concept are used for objective classification of precipitation systems based on morphological and evolutional features. They can be used in techniques of very-short-range forecasting of hazardous convective weather.
Tài liệu tham khảo
S. M. Abdullaev, N. Yu. Arskaya, and A. A. Zhelnin, “Interaction between Surface Wind Convergence Fields and Precipitation from the Cumulonimbus Clusters,” Meteorol. Gidrol., No. 8 (1994) [Russ. Meteorol. Hydrol., No. 8 (1994)].
S. M. Abdullaev and O. Yu. Lenskaya, “Evolutionary Classification of Mesoscale Squall Lines,” Meteorol. Gidrol., No. 3 (1998) [Russ. Meteorol. Hydrol., No. 3 (1998)].
A. A. Zhelnin and A. N. Starostin, “Very-short-range Forecasting and the Problem of Predictability of Mesoscale Atmospheric Processes,” Meteorol. Gidrol., No. 10 (1987) [Meteorol. Hydrol., No. 10 (1987)].
O. Yu. Lenskaya, “Methodological Aspects of Using Satellite and Radar Information in Mesoscale Forecasting (an Example of Hazardous Weather in Moscow on July 24, 2001),” Vestnik Chelyabinsk. Univ., No. 6 (2007) [Bull. Chelyabinsk Univ., No. 6 (2007)].
O. Yu. Lenskaya and S. M. Abdullaev, “Using the Doppler Radar and Surface Observational Data to Study and Forecast the Squalls,” Vestnik Chelyabinsk. Univ., No. 1 (2005) [Bull. Chelyabinsk Univ., No. 1 (2005)].
O. Yu. Lenskaya and S. M. Abdullaev, “A Method for Reconstruction of the Type of Mesoscale Precipitation Systems from the Features of Surface Pressure Changes,” Vestnik Chelyabinsk. Univ., No. 1 (2005) [Bull. Chelyabinsk Univ., No. 1 (2005)].
A. N. Starostin, E. M. Livshits, and V. S. Shvetsov, “Mesoscale Structure of Radar Echo Fields in Moldavia,” Meteorol. Gidrol., No. 10 (1983) [Sov. Meteorol. Hydrol., No. 10 (1983)].
S. Abdoulaev, “Evolution and Hierarchy of Cumulonimbus Ensembles,” Brazilian J. of Meteorology, No. 2, 10 (1995).
S. Abdoulaev, O. Lenskaia, V. S. Marques, et al., “Analysis of Mesoscale System Using Cloud-to-Ground Flash Data,” Brazilian J. of Geophysics, No. 1, 19 (2001).
S. Abdoulaev, A. Starostin, and O. Lenskaia, “Mesoscale Precipitation Systems in Rio Grande do Sul. Part 3: Structure and Evolution of Non-line Mesoconvective Systems,” Brazilian J. of Meteorology, No. 2, 16 (2001).
S. Abdoulaev, A. Starostin, and O. Lenskaia, “Mesoscale Precipitation Systems in Rio Grande do Sul. Part 2: Thunderstorms in Non-line Mesoconvective Systems,” Brazilian J. of Meteorology, No. 1, 16 (2001).
S. Abdoulaev, A. Starostin, O. Lenskaia, and R. G. Gomes, “Mesoscale Precipitation Systems in Rio Grande do Sul. Part 1: Classification of Mesoscale Systems,” Brazilian J. of Meteorology, No. 2, 13 (1998).
K. A. Browning, “The Mesoscale Data Base and it Using in Mesoscale Forecasting,” Quart. J. Roy. Meteorol. Soc., No. 488, 115 (1989).
R. A. Houze, Jr., Cloud Dynamics (Academic Press, London, 1993).