Chu kỳ sống của các con lạch: đánh giá khả năng nhạy cảm tại khu vực rift chính phía Nam Ethiopia

Liuelsegad Belayneh1,2, Matthieu Kervyn2, Guchie Gulie3, Jean Poesen4,5, Cornelis Stal6, Alemayehu Kasaye3, Tizita Endale1, John Sekajugo2,7,8, Olivier Dewitte9
1Department of Natural Resource Management, Arba Minch University, Arba Minch, Ethiopia
2Department of Geography, Vrije Universiteit Brussel, Brussels, Belgium
3Department of Water Resource and Irrigation Engineering, Arba Minch University, Arba Minch, Ethiopia
4Department of Earth and Environmental Sciences, KU Leuven, Louvain, Belgium
5Department of Earth Sciences and Spatial Management, Maria Curie-Sklodowska University, Lublin, Poland
6Department of Built Environment, HOGENT, Ghent, Belgium
7Department of Environment, Natural Resources and Tourism, Mountains of the Mon University, Fort Portal, Uganda
8Department of Biology, Mbarara University of Science and Technology, Mbarara, Uganda
9Department of Earth Sciences, Royal Museum for Central Africa, Tervuren, Belgium

Tóm tắt

Các con lạch trải qua các trạng thái hoạt động khác nhau trong chu kỳ sống của chúng. Ví dụ, tỷ lệ phát triển cao nhất thường được quan sát thấy trong giai đoạn sau khi chúng được hình thành, trong khi chúng ít hoạt động hơn khi đạt đến ổn định. Do đó, việc hiểu các điều kiện môi trường mà dưới đó các con lạch bắt đầu, mở rộng và ổn định là rất quan trọng để giảm thiểu tác động của chúng. Các đánh giá khả năng nhạy cảm dựa trên dữ liệu là những phương pháp chính để hiểu những điều kiện này ở quy mô lưu vực. Tuy nhiên, các đánh giá như vậy thường chỉ tập trung, ở mức tốt nhất, vào một phần của vấn đề (ví dụ: vào phần đầu của các con lạch) và không xem xét các quá trình xói mòn của lạch. Cho đến nay, chưa có nghiên cứu nào cố gắng mô phỏng một cách rõ ràng chu kỳ sống của các con lạch ở quy mô khu vực bằng cách sử dụng phương pháp thống kê. Ở đây, chúng tôi giúp thu hẹp khoảng cách nghiên cứu này thông qua việc mô hình hóa riêng biệt vị trí nơi các con lạch mới bắt đầu và nơi chúng ổn định bằng cách sử dụng cả điểm khởi phát của lạch và đầu lạch. Cụ thể hơn, chúng tôi nghiên cứu hơn 4400 con lạch hoạt động và không hoạt động trong khu vực rift chính phía Nam Ethiopia. Sử dụng các mô hình hồi quy logistic, chúng tôi đánh giá khả năng nhạy cảm đối với các điểm khởi phát lạch được lấy từ ngưỡng diện tích thoát nước (S–A). Điều này sau đó được so sánh với khả năng nhạy cảm của các đầu lạch hoạt động hoặc không hoạt động tại cấp độ của bốn lưu vực được xem xét cùng nhau và riêng lẻ. Các khu vực có khả năng nhạy cảm cao đối với điểm khởi phát lạch chủ yếu nằm ở các cảnh quan tái sinh ở phía dưới các điểm gãy liên quan đến rift, nơi các dốc đứng dốc nghiêng hơn gần đây so với các cảnh quan di sản xung quanh và nơi có biển đổi đất đai. Các dốc hình lòng chảo với nồng độ dòng chảy bề mặt cao hơn thúc đẩy sự khởi đầu của các con lạch. Ngược lại, các con lạch ổn định ở các dốc hình lồi với đặc điểm phân tán hơn. Các mô hình khả năng nhạy cảm được tạo ra có thể đóng góp vào quá trình ra quyết định về các vị trí tối ưu cho các biện pháp bảo tồn đất và nước trong nhiều giai đoạn của chu kỳ sống của các con lạch.

Từ khóa

#chu kỳ sống #lạch #đánh giá khả năng nhạy cảm #khu vực rift #xói mòn #hồi quy logistic #bảo tồn đất và nước

Tài liệu tham khảo

Addisie MB, Ayele GK, Gessess AA, Tilahun SA, Zegeye AD, Moges MM, Schmitter P, Langendoen EJ, Steenhuis TS (2017) Gully head retreat in the sub-humid ethiopian highlands: the ene-chilala catchment. Land Degrad Dev 28(5):1579–1588. https://doi.org/10.1002/ldr.2688 Ahmadpour H, Bazrafshan O, Rafiei-Sardooi E, Zamani H, Panagopoulos T (2021) Gully erosion susceptibility assessment in the kondoran watershed using machine learning algorithms and the boruta feature selection. Sustainability. https://doi.org/10.3390/su131810110 Al-Bawi AJ, Al-Abadi AM, Pradhan B, Alamri AM (2021) Assessing gully erosion susceptibility using topographic derived attributes, multi-criteria decision-making, and machine learning classifiers. Geomat Nat Haz Risk 12(1):3035–3062. https://doi.org/10.1080/19475705.2021.1994024 Al-Abadi AM, Al-Ali AK (2018) Susceptibility mapping of gully erosion using GIS—based statistical bivariate models : a case study from Ali Al—Gharbi District. Maysan Environ Earth Sci 77(6):1–20. https://doi.org/10.1007/s12665-018-7434-2 Allison PD (2001) Logistic regression using the SAS System: theory and application. Wiley, New York, p 288 Arabameri A, Chen W, Loche M, Zhao X, Yang Li LL, Cerda A, Biswajeet Pradhan DTB (2019) Comparison of machine learning models for gully erosion susceptibility mapping. Geosci Front. https://doi.org/10.1016/j.gsf.2019.11.009 Beck HE, Zimmermann NE, McVicar TR, Vergopolan N, Berg A, Wood EF (2018) Present and future köppen-geiger climate classification maps at 1-km resolution. Sci Data 5:1–12. https://doi.org/10.1038/sdata.2018.214 Begueri S (2006) Validation and evaluation of predictive models in hazard assessment and risk management. Nat Hazards 37:315–329. https://doi.org/10.1007/s11069-005-5182-6 Belayneh L, Dewitte O, Gulie G, Poesen J, Hara DO, Kassaye A, Endale T, Kervyn M (2022) Landslides and gullies interact as sources of lake sediments in a rifting context : insights from a highly degraded mountain environment. Geosciences 12(274):1–28 Bigi A, Hasbargen LE, Montanari A, Paola C (2006) Knickpoints and hillslope failures: interactions in a steady-state experimental landscape. Spec Paper Geol Soc Am 398:295–307. https://doi.org/10.1130/2006.2398(18) Bouramtane T, Hilal H, Rezende-Filho AT, Bouramtane K, Barbiero L, Abraham S, Valles V, Kacimi I, Sanhaji H, Torres-Rondon L, de Castro DD (2022) Mapping gully erosion variability and susceptibility using remote sensing, multivariate statistical analysis, and machine learning in south Mato Grosso Brazil. Geosciences 12(6):25 Buitrago JY, Martínez LJ (2016) Modelos de elevación digital (DEM) para evaluar los riesgos de erosión del suelo: Un estudio de caso en Boyacá Colombia. Agronomia Colombiana 34(2):239–249 Campo-Bescõs MA, Flores-Cervantes JH, Bras RL, Casalí J, Giráldez JV (2013) Evaluation of a gully headcut retreat model using multitemporal aerial photographs and digital elevation models. J Geophys Res Earth Surf 118(4):2159–2173. https://doi.org/10.1002/jgrf.20147 Conforti M, Aucelli P, Calabria U, Geomorphology and GIS analysis for mapping gully erosion susceptibility in the Turbolo Stream catchment (Northern Calabria, Italy) (2011). https://doi.org/10.1007/s11069-010-9598-2 Conoscenti C, Angileri S, Cappadonia C, Rotigliano E, Agnesi V, Märker M (2014) Gully erosion susceptibility assessment by means of GIS-based logistic regression: a case of Sicily (Italy). Geomorphology 204:399–411. https://doi.org/10.1016/j.geomorph.2013.08.021 Daba S, Rieger W, Strauss P (2003) Assessment of gully erosion in eastern Ethiopia using photogrammetric techniques. CATENA 50:273–291 De Geeter S, Verstraeten G, Poesen J, Campforts B, Vanmaercke M (2023) A data driven gully head susceptibility map of Africa at 30 m resolution. Environ Res 224:115573 Desmet PJJ, Poesen J, Govers G, Vandaele K (1999) Importance of slope gradient and contributing area for optimal prediction of the initiation and trajectory of ephemeral gullies. CATENA 37(3–4):377–392. https://doi.org/10.1016/S0341-8162(99)00027-2 Dewitte O, Daoudi M, Bosco C, Van Den Eeckhaut M (2015) Predicting the susceptibility to gully initiation in data-poor regions. Geomorphology 228:101–115. https://doi.org/10.1016/j.geomorph.2014.08.010 Endale T, Diels J, Tsegaye D, Kassaye A, Belayneh L, Verdoodt A (2022) Farmer-science-based soil degradation metrics guide prioritization of catchment-tailored control measures. Environ Dev 45:100783. https://doi.org/10.1016/j.envdev.2022.100783 Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24(1):38–49. https://doi.org/10.1017/S0376892997000088 Frankl A, Poesen J, Scholiers N, Jacob M, Haile M, Deckers J, Nyssen J (2013) Factors controlling the morphology and volume (V)-length (L) relations of permanent gullies in the northern Ethiopian Highlands. Earth Surf Proc Land 38(14):1672–1684. https://doi.org/10.1002/esp.3405 Hosmer DW, Lemeshow S (2000) Applied logistic regression. Wiley, New York Igwe O, John UI, Solomon O, Obinna O (2020) GIS-based gully erosion susceptibility modeling, adapting bivariate statistical method and AHP approach in Gombe town and environs Northeast Nigeria. Geoenviron Disasters. https://doi.org/10.1186/s40677-020-00166-8 Jacobs L, Dewitte O, Poesen J, Sekajugo J, Nobile A, Rossi M, Thiery W, Kervyn M (2018) Field-based landslide susceptibility assessment in a data-scarce environment: the populated areas of the Rwenzori Mountains. Nat Hazard 18(1):105–124. https://doi.org/10.5194/nhess-18-105-2018 Jaeger KL, Montgomery DR, Bolton SM (2007) Channel and perennial flow initiation in headwater streams: management implications of variability in source-area size. Environ Manage 40(5):775–786. https://doi.org/10.1007/s00267-005-0311-2 Kariminejad N, Mohsen Hosseinalizadeh N, Pourghasemi HR, Jakiel AB, MA, GIS—based susceptibility assessment of the occurrence of gully headcuts and pipe collapses in a semi—arid environment: Golestan Province, NE Iran. June, 2211–2225 (2019). https://doi.org/10.1002/ldr.3397 Knapen A, Poesen J (2010) Soil erosion resistance effects on rill and gully initiation points and dimensions. Earth Surf Proc Land 35(2):217–228. https://doi.org/10.1002/esp.1911 Kubwimana D, Ait Brahim L, Nkurunziza P, Dille A, Depicker A, Nahimana L, Abdelouafi A, Dewitte O (2021) Characteristics and distribution of landslides in the populated hillslopes of Bujumbura. Burundi Geosci 11:259. https://doi.org/10.3390/geosciences11060259 Lucà F, Conforti M, Robustelli G (2011) Comparison of GIS-based gullying susceptibility mapping using bivariate and multivariate statistics : Northern Calabria, South Italy. Geomorphology 134:297–308. https://doi.org/10.1016/j.geomorph.2011.07.006 Lutete Landu E, Ilombe Mawe G, Makanzu Imwangana F, Bielders C, Dewitte O, Poesen J, Hubert A, Vanmaercke M (2023) Effectiveness of measures aiming to stabilize urban gullies in tropical cities: results from field surveys across D.R. Congo. Int Soil Water Conserv Res 11(1):14–29. https://doi.org/10.1016/j.iswcr.2022.10.003 Makanzu Imwangana F, Dewitte O, Ntombi M, Moeyersons J (2014) Topographic and road control of mega-gullies in Kinshasa (DR Congo). Geomorphology 217:131–139. https://doi.org/10.1016/j.geomorph.2014.04.021 Manap MA, Sulaiman WNA, Ramli MF, Pradhan B, Surip N (2013) A knowledge-driven GIS modeling technique for groundwater potential mapping at the Upper Langat Basin Malaysia. Arab J Geosci 6(5):1621–1637. https://doi.org/10.1007/s12517-011-0469-2 Mao Z, Saint-André L, Genet M, Mine FX, Jourdan C, Rey H, Courbaud B, Stokes A (2012) Engineering ecological protection against landslides in diverse mountain forests: choosing cohesion models. Ecol Eng 45:55–69. https://doi.org/10.1016/j.ecoleng.2011.03.026 Martínez-Casasnovas JA, Ramos MC, Poesen J (2004) Assessment of sidewall erosion in large gullies using multi-temporal DEMs and logistic regression analysis. Geomorphology 58(1–4):305–321. https://doi.org/10.1016/j.geomorph.2003.08.005 Millares A, Gulliver Z, Polo MJ (2012) Scale effects on the estimation of erosion thresholds through a distributed and physically-based hydrological model. Geomorphology 153–154:115–126. https://doi.org/10.1016/j.geomorph.2012.02.016 Moeyersons J (1991) Ravine formation on steep slopes: forward versus regressive erosion some case studies from Rwanda. CATENA 18(3–4):309–324. https://doi.org/10.1016/0341-8162(91)90028-V Moges A, Holden M (2008) Estimating the rate and consequences of gully development, a case study of Umbulo catchment in Southern Ethiopia. Land Degrad Dev 19(August):574–586. https://doi.org/10.1002/ldr Nachtergaele J, Poesen J, Oostwoud Wijdenes D, Vandekerckhove L (2002) Medium-term evolution of a gully developed in a loess-derived soil. Geomorphology 46(3–4):223–239. https://doi.org/10.1016/S0169-555X(02)00075-2 NMA, Ethiopian national meteorological agency. Dekadal rainfall. Adjusted rainfall reconstruction data (2020). http://iridl.ldeo.columbia.edu/SOURCES/.Ethiopia/ Nyssen J, Poesen J, Moeyersons J, Deckers J, Haile M, Lang A (2004) Human impact on the environment in the Ethiopian and Eritrean highlands—a state of the art. Earth Sci Rev 64:273–320. https://doi.org/10.1016/S0012-8252(03)00078-3 Nyssen J, Poesen J, Moeyersons J, Luyten E, Veyret-Picot M, Deckers J, Haile M, Govers G (2002) Impact of road building on gully erosion risk: a case study from the Northern Ethiopian Highlands. Earth Surf Proc Land 27(12):1267–1283. https://doi.org/10.1002/esp.404 Nyssen J, Poesen J, Veyret-Picot M, Moeyersons J, Haile M, Deckers J, Dewit J, Naudts J, Teka K, Govers G (2006) Assessment of gully erosion rates through interviews and measurements: a case study from northern Ethiopia. Earth Surf Proc Land 31(2):167–185. https://doi.org/10.1002/esp.1317 Oostwoud Wijdenes DJ, Poesen J, Vandekerckhove L, Ghesquiere M (2000) Spatial distribution of gully head activity and sediment supply along an ephemeral channel in a mediterranean environment. CATENA 39(3):147–167. https://doi.org/10.1016/S0341-8162(99)00092-2 Oreskes N, Shrader-Frechette K, Belitz K (1994) Verification, validation, and confirmation of numerical models in the earth sciences. Science 263(5147):641–646 Papanicolaou T, Admiraal DM, Wilson C, Kephart CW, Kephart C, Monitoring the effects of knickpoint erosion on bridge pier and abutment structural damage due to scour monitoring the effects of knickpoint erosion on bridge pier and abutment structural damage due to scour (2012) Pederson JL, Petersen PA, Dierker JL (2006) Gullying and erosion control at archeological sites in Grand Canyon Arizona. Earth Surf Process Landf 31(4):507–525. https://doi.org/10.1002/esp.1286 Poesen J (2018) Soil erosion in the Anthropocene: research needs. Earth Surf Proc Land 43(1):64–84. https://doi.org/10.1002/esp.4250 Poesen J, Nachtergaele J, Verstraeten G, Valentin C (2003) Gully erosion and environmental change: importance and research needs. CATENA 50(2–4):91–133. https://doi.org/10.1016/S0341-8162(02)00143-1 Poesen J, Vanwalleghem T, Vente J, Knapen A, Verstraeten G, Martinez-Casasnovas J (2006) Gully erosion in Europe 5. In: Boardman J, Poesen J (eds) Soil erosion in Europe. Wiley, Chichester Rahmati O, Haghizadeh A, Pourghasemi HR, Noormohamadi F (2016) Gully erosion susceptibility mapping: the role of GISbased bivariate statistical models and their comparison. Nat Hazards 82(2):1231–1258. https://doi.org/10.1007/s11069-016-2239-7 Roy J, Saha S (2019) GIS-based gully erosion susceptibility evaluation using frequency ratio, cosine amplitude and logistic regression ensembled with fuzzy logic in Hinglo River Basin, India. Remote Sens Appl: Soc Environ 15(June):100247. https://doi.org/10.1016/j.rsase.2019.100247 Schmidt R, Heinrich J (2011) 200 years of land—use change and gully erosion: a case study from Małopolska, SE Poland. Landf Anal 17:167–171 Schumm SA, Bradley MT, Begin ZB, Application of geomorphic principles. Completion report OWRT project No. B-1S0-COLO, Department (93) (1980). Schϋtt B, Thiemann S (2006) Kulfo River, South Ethiopia as a regulator of lake level changes in the Lake Abaya-Lake Chamo system. Zbl Geol Paläont 1:129–143 Sidorchuk A (2006a) Stages in gully evolution and self-organized criticality. Earth Surf Proc Land 31(11):1329–1344. https://doi.org/10.1002/esp.1334 Sidorchuk W (2006b) Modeling the processes of incised coastal gully evolution. http://www.islandrivers.org.uk/wp-content/uploads/2015/11/Chapter2.pdf Steger S, Brenning A, Bell R, Petschko H, Glade T (2016) Exploring discrepancies between quantitative validation results and the geomorphic plausibility of statistical landslide susceptibility maps. Geomorphology 262:8–23. https://doi.org/10.1016/j.geomorph.2016.03.015 Tilahun AK, Verstraeten G, Chen M, Gulie G, Belayneh L, Endale T (2022) Temporal and spatial variability of suspended sediment rating curves for rivers draining into the Ethiopian Rift Valley. Land Degrad Dev 34(2):478–492. https://doi.org/10.1002/ldr.4473 Torri D, Poesen J (2014) A review of topographic threshold conditions for gully head development in different environments. Earth Sci Rev 130:73–85. https://doi.org/10.1016/j.earscirev.2013.12.006 USDA, Technical supplement 14P: gullies and their control. Stream restoration design national engineering handbook (2007). https://directives.sc.egov.usda.gov/17826.wba Valentin C, Poesen J, Li Y (2005) Gully erosion: Impacts, factors and control. CATENA 63(2–3):132–153. https://doi.org/10.1016/j.catena.2005.06.001 Vanmaercke M, Panagos P, Vanwalleghem T, Hayas A, Foerster S, Borrelli P, Rossi M, Torri D, Casali J, Borselli L, Vigiak O, Maerker M, Haregeweyn N, De Geeter S, Zgłobicki W, Bielders C, Cerdà A, Conoscenti C, de Figueiredo T, Poesen J (2021) Measuring, modeling and managing gully erosion at large scales: a state of the art. Earth-Sci Rev 218:1–34. https://doi.org/10.1016/j.earscirev.2021.103637 Vanmaercke M, Poesen J, Van Mele B, Demuzere M, Bruynseels A, Golosov V, Bezerra JFR, Bolysov S, Dvinskih A, Frankl A, Fuseina Y, Guerra AJT, Haregeweyn N, Ionita I, Makanzu Imwangana F, Moeyersons J, Moshe I, Nazari Samani A, Niacsu L, Yermolaev O (2016) How fast do gully headcuts retreat? Earth-Sci Rev 154:336–355. https://doi.org/10.1016/j.earscirev.2016.01.009 Vanwalleghem T, Poesen J, Nachtergaele J, Verstraeten G (2005) Characteristics, controlling factors and importance of deep gullies under cropland on loess-derived soils. Geomorphology 69(1–4):76–91. https://doi.org/10.1016/j.geomorph.2004.12.003 Whitford JA, Newham LTH, Vigiak O, Melland AR, Roberts AM (2010) Geomorphology rapid assessment of gully sidewall erosion rates in data-poor catchments: a case study in Australia. Geomorphology 118(3–4):330–338. https://doi.org/10.1016/j.geomorph.2010.01.013 Yang D, Qiu H, Hu S, Pei Y, Wang X, Du C, Long Y, Cao M (2021) Influence of successive landslides on topographic changes revealed by multitemporal high-resolution UAS-based DEM. CATENA 202(January):105229. https://doi.org/10.1016/j.catena.2021.105229 Zabihi M, Mirchooli F, Motevalli A, Darvishan AK, Reza H, Ali M, Sadighi F (2018) Spatial modeling of gully erosion in Mazandaran Province, northern Iran. CATENA 161:1–13. https://doi.org/10.1016/j.catena.2017.10.010 Zare M, Soufi M, Nejabat M (2022) The topographic threshold of gully erosion and contributing factors. Nat Hazards. https://doi.org/10.1007/s11069-022-05254-6 Zgłobicki W, Baran-Zgłobicka B, Gawrysiak L, Telecka M (2014) The impact of permanent gullies on present-day land use and agriculture in loess areas (E. Poland). CATENA 126:28–36. https://doi.org/10.1016/j.catena.2014.10.022 Zhang T, Liu G, Duan X, Wilson GV (2016) Spatial distribution and morphologic characteristics of gullies in the Black Soil Region of Northeast China: Hebei watershed. Phys Geogr 37(3–4):228–250