Tác động môi trường theo chu trình sống của hệ thống đường sắt cao tốc tại hành lang Houston-Dallas I-45

Public Transport - Tập 14 - Trang 481-501 - 2021
Jesuina Chipindula1, Hongbo Du1, Venkata S. V. Botlaguduru1,2, Doeun Choe1,3, Raghava R. Kommalapati1,3
1Center for Energy and Environmental Sustainability, Prairie View A&M University, Prairie View, USA
2Department of Environmental Science and Engineering, Indian Institute of Technology Bombay, Mumbai, India
3Department of Civil and Environmental Engineering, Prairie View A&M University, Prairie View, USA

Tóm tắt

Hành lang Houston-Dallas (I-45) là tuyến đường bận rộn nhất trong tổng số 18 hành lang giao thông ở Texas, Hoa Kỳ. Dự kiến sự gia tăng dân số và sự gia tăng di chuyển hành khách có thể dẫn đến tác động đáng kể đến môi trường khu vực. Nghiên cứu này sử dụng khung chu trình sống để dự đoán và đánh giá các thay đổi ròng về tác động môi trường liên quan đến sự phát triển tiềm năng của hệ thống đường sắt cao tốc (HSR) dọc theo hành lang I-45 thông qua chu trình sống của nó. Tác động môi trường được ước tính dựa trên lượng phát thải CO2 và khí nhà kính (GHG) tính cho mỗi kilômét hành khách/xe (V/PKT) sử dụng phương pháp đánh giá chu trình sống. Các phân tích được thực hiện tham chiếu đến cơ sở dữ liệu Ecoinvent 3.4 thông qua các giai đoạn: khai thác và chế biến vật liệu, xây dựng hạ tầng, sản xuất phương tiện, hoạt động của hệ thống và kết thúc vòng đời. Lợi ích môi trường được đánh giá bằng cách so sánh sự phát triển tiềm năng của hệ thống HSR với các hệ thống giao thông hiện có. Thành phần phương tiện, đặc biệt là hoạt động và bảo trì phương tiện, là yếu tố đóng góp chính vào toàn bộ tiềm năng nóng lên toàn cầu với khoảng 93% tổng lượng phát thải GHG của chu trình sống. Đối với thành phần hạ tầng, 56,76% lượng phát thải GHG đến từ giai đoạn khai thác và chế biến vật liệu (23,75 kgCO2eq/VKT). Lượng phát thải chu trình sống của HSR, ngoại trừ PM, thấp hơn đáng kể so với ô tô chở khách.

Từ khóa

#đường sắt cao tốc #tác động môi trường #chu trình sống #phát thải khí nhà kính #hành lang I-45

Tài liệu tham khảo

Andrade C, D’Agosto M (2016) The role of rail transit systems in reducing energy and carbon dioxide emissions: the case of the city of Rio de Janeiro. Sustainability 8:Article ID 150. https://doi.org/10.3390/su8020150 Bilgili L, Kuzu SL, Cetinkaya AY, Kumar P (2019) Evaluation of railway versus highway emissions using LCA approach between the two cities of Middle Anatolia. Sustain Cities Soc 49:Article ID 101635. https://doi.org/10.1016/j.scs.2019.101635 Bueno G, Hoyos D, Capellan-Perez I (2017) Evaluating the environmental performance of the high speed rail project in the Basque Country, Spain. Res Transp Econ 62:44–56. https://doi.org/10.1016/j.retrec.2017.02.004 Chan S, Miranda-Moreno L, Patterson Z (2013) Analysis of GHG emissions for city passenger trains: is electricity an obvious option for Montreal commuter trains? J Transp Technol 3:17–29. https://doi.org/10.4236/jtts.2013.32A003 Chang Y, Lei SH, Teng JJ, Zhang JX, Zhang LX, Xu X (2019) The energy use and environmental emissions of high-speed rail transportation in China: a bottom-up modeling. Energy 182:1193–1201. https://doi.org/10.1016/j.energy.2019.06.120 Chester M, Horvath A (2010) Life-cycle assessment of high-speed rail: the case of California. Environ Res Lett 5:Article ID 014003. https://doi.org/10.1088/1748-9326/5/1/014003 Chester M, Horvath A (2012) High-speed rail with emerging automobiles and aircraft can reduce environmental impacts in California’s future. Environ Res Lett 7:Article ID 034012. https://doi.org/10.1088/1748-9326/7/3/034012 Chipindula J, Botlaguduru VSV, Du HB, Kommalapati RR, Huque Z (2018) Life cycle environmental impact of onshore and offshore wind farms in Texas. Sustainability 10:Article ID 2022. https://doi.org/10.3390/su10062022 Chipindula J, Botlaguduru V, Choe D, Kommalapati R (2019) MATEC Web of Conferences 271:05002. https://doi.org/10.1051/matecconf/201927105002 Dalkic G, Balaban O, Tuydes-Yaman H, Celikkol-Kocak T (2017) An assessment of the CO2 emissions reduction in high speed rail lines: two case studies from Turkey. J Clean Prod 165:746–761. https://doi.org/10.1016/j.jclepro.2017.07.045 Edenhofer O, Pichs-Madruga R, Sokona Y, Minx JC, Farahani E, Kadner S, Seyboth K (2015) IPCC, 2014: summary for policymakers. In: Climate Change 2014: mitigation of climate change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. https://www.ipcc.ch/site/assets/uploads/2018/03/WGIIIAR5_SPM_TS_Volume-3.pdf Federici M, Ulgiati S, Basosi R (2008) A thermodynamic, environmental and material flow analysis of the Italian highway and railway transport systems. Energy 33:760–775. https://doi.org/10.1016/j.energy.2008.01.010 Feigenbaum B (2013) High-speed rail in Europe and Asia: lessons for the United States. https://reason.org/wp-content/uploads/files/high_speed_rail_lessons.pdf Grossrieder C (2011) Life-cycle assessment of future highspeed rail in Norway. Norwegian University of Science and Technology Haas P (2014) Modal shift and high-speed rail: a review of the current literature. San José State University, San José Hodges T (2010) Public transportation’s role in responding to climate change. U.S. Department of Transportation. https://www.transit.dot.gov/sites/fta.dot.gov/files/docs/PublicTransportationsRoleInRespondingToClimateChange2010.pdf Hoehne CG, Chester MV (2017) Greenhouse gas and air quality effects of auto first-last mile use with transit. Transp Res Part D Transp Environ 53:306–320. https://doi.org/10.1016/j.trd.2017.04.030 Jones H, Moura F, Domingos T (2017) Life cycle assessment of high-speed rail: a case study in Portugal. Int J Life Cycle Assess 22:410–422. https://doi.org/10.1007/s11367-016-1177-7 Kaewunruen S, Sussman JM, Einstein HH (2015) Strategic framework to achieve carbon-efficient construction and maintenance of railway infrastructure systems. Front Environ Sci 3:Article ID 6 Kamga C, Yazici MA (2014) Achieving environmental sustainability beyond technological improvements: potential role of high-speed rail in the United States of America. Transp Res Part D Transp Environ 31:148–164. https://doi.org/10.1016/j.trd.2014.06.011 Khasreen M, Banfill P, Menzies G (2009) Life-cycle assessment and the environmental impact of buildings: a review. Sustainability 1:674–701. https://doi.org/10.3390/su1030674 Krezo S, Mirza O, He Y, Makim P, Kaewunruen S (2016) Field investigation and parametric study of greenhouse gas emissions from railway plain-line renewals. Transp Res Part D Transp Environ 42:77–90 Lin JY, Li HM, Huang W, Xu WT, Cheng SH (2019) A carbon footprint of high-speed railways in China: a case study of the Beijing-Shanghai line. J Ind Ecol 23:869–878. https://doi.org/10.1111/jiec.12824 Liu RF, Li A (2012) Forecasting high-speed rail ridership using a simultaneous modeling approach. Transp Plan Technol 35:577–590. https://doi.org/10.1080/03081060.2012.701816 Massetti E, Brown M, Lapsa M, Sharma I, Bradbury J, Cunliff C, Li Y (2017) Environmental quality and the U.S. power sector: air quality, water quality, land use and environmental justice. https://www.osti.gov/biblio/1339359-environmental-quality-power-sector-air-quality-land-use-environmental-justice Matute JM, Chester MV (2015) Cost-effectiveness of reductions in greenhouse gas emissions from High-Speed Rail and urban transportation projects in California. Transp Res Part D Transp Environ 40:104–113. https://doi.org/10.1016/j.trd.2015.08.008 Miyauchi T, Nagatomo T, Tsujimura T, Tsuchiya H (1999) Fundamental investigations of LCA of Shinkansen vehicles. Q Rep RTRI 40:204–209 Miyoshi C, Givoni M (2014) The environmental case for the high-speed train in the UK: examining the London–Manchester route. Int J Sustain Transp 8:107–126. https://doi.org/10.1080/15568318.2011.645124 Neuman M, Bright E (2008) Texas urban triangle: framework for future growth. https://static.tti.tamu.edu/swutc.tamu.edu/publications/technicalreports/167166-1a.pdf Robertson S (2016) The potential mitigation of CO2 emissions via modal substitution of high-speed rail for short-haul air travel from a life cycle perspective—an Australian case study. Transp Res Part D Transp Environ 46:365–380. https://doi.org/10.1016/j.trd.2016.04.015 Robertson S (2018) A carbon footprint analysis of renewable energy technology adoption in the modal substitution of high-speed rail for short-haul air travel in Australia. Int J Sustain Transp 12:299–312. https://doi.org/10.1080/15568318.2017.1363331 Schipper L, Saenger C, Sudardshan A (2011) Transport and carbon emissions in the United States: the long view. Energies 4:563–581. https://doi.org/10.3390/en4040563 Song XD, Fu YB, Chen ZY, Liu HB (2014) Environmental impact evaluation for high-speed railway. J Central South Univ 21:2366–2371. https://doi.org/10.1007/s11771-014-2189-8 TCEQ (2019) Texas emission sources—a graphical representation. https://www.tceq.texas.gov/airquality/areasource/emissions-sources-charts. Accessed 10 2018 Todorovich P, Hagler Y (2011) High speed rail in America. http://www.america2050.org/2011/01/high-speed-rail-in-america.html Transforming Travel In Texas. Assessing passenger demand for high-speed train service between North Texas, the Brazos Valley and Greater Houston: an updated analysis of consumer demand and ridership. https://www.texascentral.com/ridership/ USDOE (2015) Advancing clean transportation and vehicle systems and technologies in quadrennial technology review 2015 Omnibus—an assessment of energy technologies and research opportunities. https://www.energy.gov/quadrennial-technology-review-2015-omnibus#chap8ta USDT-FRA (2017) Dallas to Houston high-speed rail draft environmental impact statement appendix E. https://cms8.fra.dot.gov/current-environmental-reviews/dallas-houston-high-speed-rail/dallas-houston-high-speed-rail-draft USEIA (2019a) Energy-related carbon dioxide emissions by state, 2005–2016. https://www.eia.gov/environment/emissions/state/analysis/. Accessed 17 July 2018 USEIA (2019b) How much of U.S. carbon dioxide emissions are associated with electricity generation? https://www.eia.gov/tools/faqs/faq.php?id=77&t=11%22. Accessed 20 June 2019 USEPA sources of greenhouse gas emissions. https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions. Accessed 25 May 2019 Yue Y et al (2015) Life cycle assessment of high speed rail in China. Transp Res Part D Transp Environ 41:367–376 Zhang M, Chen B (2009) Future travel demand and its implications for transportation infrastructure investments in the Texas Triangle. University of Texas at Austin. Center for Transportation Research. https://rosap.ntl.bts.gov/view/dot/16880 Zhao Y, Yu HB (2018) A door-to-door travel time approach for evaluating modal competition of intercity travel: a focus on the proposed Dallas-Houston HSR route. J Transp Geogr 72:13–22. https://doi.org/10.1016/j.jtrangeo.2018.07.008