Đánh giá vòng đời của nhà máy chế biến sinh học từ hạt thầu dầu: Đánh giá LCA từ nguồn đến bánh xe

The International Journal of Life Cycle Assessment - Tập 23 - Trang 1788-1805 - 2017
Benyamin Khoshnevisan1, Shahin Rafiee1, Meisam Tabatabaei2,3, Hossein Ghanavati2,3, Seyed Saeid Mohtasebi1, Vajiheh Rahimi4, Marzieh Shafiei5, Irini Angelidaki6, Keikhosro Karimi4,7
1Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
2Microbial Biotechnology Department, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education, and Extension Organization (AREEO), Karaj, Iran
3Biofuel Research Team (BRTeam), Karaj, Iran
4Department of Chemical Engineering, Isfahan University of Technology, Isfahan, Iran
5Department of Chemical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
6Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark
7Industrial Biotechnology Group, Institute of Biotechnology and Bioengineering, Isfahan University of Technology, Isfahan, Iran

Tóm tắt

Sự cạn kiệt nguồn tài nguyên hóa thạch và những lo ngại về môi trường liên quan đến việc sử dụng rộng rãi chúng đã thu hút sự chú ý của các nhà hoạch định chính sách năng lượng và các nhà nghiên cứu. Trong số những kịch bản khác nhau được đưa ra để thương mại hóa nhiên liệu sinh học, nhiều khái niệm nhà máy chế biến sinh học đã thu hút sự quan tâm toàn cầu nhờ khả năng chuyển đổi sinh khối thành một loạt các sản phẩm thương mại và sinh năng lượng. Nghiên cứu này nhằm phát triển các kịch bản chế biến sinh học mới dựa trên hạt thầu dầu để tạo ra biodiesel và các sản phẩm phụ khác, tức là ethanol và biogas. Trong các kịch bản này, glycerin, nhiệt và điện cũng được xem là các sản phẩm phụ. Các kịch bản được phát triển cũng được so sánh với một hệ thống tham chiếu hóa thạch cung cấp cùng một lượng năng lượng thông qua việc đốt cháy diesel nguyên chất. Phân tích vòng đời (LCA) đã được sử dụng để điều tra các tác động môi trường của sản xuất và tiêu thụ biodiesel từ hạt thầu dầu theo phương pháp chế biến sinh học. Tất cả các dòng đầu vào và đầu ra từ giai đoạn canh tác đến đốt cháy trong động cơ diesel cũng như những thay đổi trong carbon hữu cơ của đất (SOC) đã được xem xét. Phương pháp Impact 2002+ đã được sử dụng để định lượng các tác động môi trường. Kết quả LCA cho thấy rằng so với hệ thống tham chiếu hóa thạch, chỉ một kịch bản (tức là Sc-3 với việc đồng sản xuất một lượng lớn biodiesel và biomethane) có lượng phát thải khí nhà kính (GHG) thấp hơn 16% mà không tính đến tác động cải thiện của SOC. Hơn nữa, hạng mục thiệt hại tài nguyên của kịch bản này thấp hơn 50% so với việc đốt cháy diesel nguyên chất. Kết quả đã chứng minh rằng từ góc độ vòng đời, năng lượng nên được ưu tiên trong các nhà máy chế biến sinh học vì một nhà máy chế biến sinh học cần có sự cân bằng năng lượng tích cực để được coi là nguồn năng lượng bền vững. Mặc dù có tác động tích cực đến cân bằng năng lượng và GHG, các nhà máy chế biến sinh học này lại gây ra tác động môi trường tiêu cực đối với các hạng mục thiệt hại khác như Sức Khỏe Con Người và Chất lượng Hệ sinh thái. Mặc dù các nhà máy chế biến sinh học cung cấp những đặc điểm độc đáo như giải pháp hứa hẹn để giảm thiểu biến đổi khí hậu và giảm sự phụ thuộc vào năng lượng hóa thạch, nhưng việc lựa chọn các tùy chọn chế biến sinh khối và quyết định quản lý có thể ảnh hưởng đến kết quả cuối cùng về đánh giá môi trường và cân bằng năng lượng. Hơn nữa, nếu các nhà máy chế biến sinh học tập trung vào sản xuất nhiên liệu giao thông, vẫn cần nỗ lực lớn để có được hiệu suất môi trường tốt hơn trong các hạng mục thiệt hại về Sức Khỏe Con Người và Chất lượng Hệ sinh thái. Nghiên cứu này khuyến nghị rằng các nghiên cứu trong tương lai nên tập trung vào các tùy chọn chế biến sinh khối và tối ưu hóa quy trình để đảm bảo tương lai cho các loại nhiên liệu sinh học bền vững nhất.

Từ khóa


Tài liệu tham khảo

Aghbashlo M, Tabatabaei M, Dadak A, Younesi H, Najafpour G (2016) Exergy-based performance analysis of a continuous stirred bioreactor for ethanol and acetate fermentation from syngas via Wood–Ljungdahl pathway. Chem Eng Sci 143:36–46 Aghbashlo M, Hosseinpour S, Tabatabaei M, Dadak A (2017a) Fuzzy modeling and optimization of the synthesis of biodiesel from waste cooking oil (WCO) by a low power, high frequency piezo-ultrasonic reactor. Energy 132:65–78 Aghbashlo M, Tabatabaei M, Khalife E, Najafi B, Mirsalim SM, Gharehghani A, Mohammadi P, Dadak A, Shojaei TR, Khounani Z (2017b) A novel emulsion fuel containing aqueous nano cerium oxide additive in diesel–biodiesel blends to improve diesel engines performance and reduce exhaust emissions: part II—exergetic analysis. Fuel 205:262–271 Alam F, Mobin S, Chowdhury H (2015) Third generation biofuel from algae. Procedia Eng 105:763–768 Ahlgren S, Björklund A, Ekman A, Karlsson H, Berlin J, Börjesson P, Ekvall T, Finnveden G, Janssen M, Strid I (2013): LCA of biorefinieries-identification of key issues and methodological recommendations. Report No 2013:25, f3 The Swedish Knowledge Centre for Renewable Transportation Fuels, Sweden. Available at www.f3centre.se Amouri M, Mohellebi F, Zaïd TA, Aziza M (2016) Sustainability assessment of Ricinus communis biodiesel using LCA approach. Clean Technol Environ 19:749–760 Bashiri H, Pourbeiram N (2016) Biodiesel production through transesterification of soybean oil: a kinetic Monte Carlo study. J Mol Liq 223:10–15 Bateni H, Karimi K (2016) Biodiesel production from castor plant integrating ethanol production via a biorefinery approach. Chem Eng Res Des 107:4–12 Bateni H, Karimi K, Zamani A, Benakashani F (2014) Castor plant for biodiesel, biogas, and ethanol production with a biorefinery processing perspective. Appl Eng 136:14–22 Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 14:557–577 Brigham RD (1993) Castor: return of an old crop. New crops. Wiley, New York, pp 380–383 Brynolf S, Fridell E, Andersson K (2014) Environmental assessment of marine fuels: liquefied natural gas, liquefied biogas, methanol and bio-methanol. J Clean Prod 74:86–95 Caldeira C, Queirós J, Noshadravan A, Freire F (2016) Incorporating uncertainty in the life cycle assessment of biodiesel from waste cooking oil addressing different collection systems. Resour Conserv Recycl 112:83–92 Cherubini F, Jungmeier G (2010) LCA of a biorefinery concept producing bioethanol, bioenergy, and chemicals from switchgrass. Int J Life Cycle Assess 15:53–66 Cherubini F, Strømman AH (2011) Life cycle assessment of bioenergy systems: state of the art and future challenges. Bioresour Technol 102:437–451 Cherubini F, Ulgiati S (2010) Crop residues as raw materials for biorefinery systems—a LCA case study. Appl Energy 87:47–57 Collet P, Flottes E, Favre A, Raynal L, Pierre H, Capela S, Peregrina C (2017) Techno-economic and life cycle assessment of methane production via biogas upgrading and power to gas technology. Appl Energy 192:282–295 Conant RT, Paustian K, Elliott ET (2001) Grassland management and conversion into grassland: effects on soil carbon. Ecol Appl 11:343–355 Conceição MM, Candeia RA, Silva FC, Bezerra AF, Fernandes VJ, Souza AG (2007) Thermoanalytical characterization of castor oil biodiesel. Renew Sust Energ Rev 11:964–975 Council BRA (2006) Biofuels in the European Union: a vision for 2030 and beyond: final report of the Biofuels Research Advisory Council. Office for Official Publications of the European Communities, Luxembourg Daylan B, Ciliz N (2016) Life cycle assessment and environmental life cycle costing analysis of lignocellulosic bioethanol as an alternative transportation fuel. Renew Energy 89:578–587 De Souza SP, Pacca S, De Avila MT, Borges JLB (2010) Greenhouse gas emissions and energy balance of palm oil biofuel. Renew Energy 35:2552–2561 EEA (2013) EMEP/EEA air pollutant emission inventory guidebook—technical guidance to prepare national emission inventories. European Environment Agency, Luxembourg EEA Technical report No 12/2013 Eshton B, Katima JHY, Kituyi E (2013) Greenhouse gas emissions and energy balances of jatropha biodiesel as an alternative fuel in Tanzania. Biomass Bioenergy 58:95–103 Fawzy MM, Romagnoli F (2016) Environmental life cycle assessment for jatropha biodiesel in Egypt. Energy Procedia 95:124–131 Fernández-Tirado F, Parra-López C, Romero-Gámez M (2016) Life cycle assessment of biodiesel in Spain: comparing the environmental sustainability of Spanish production versus Argentinean imports. Energy Sustain Dev 33:36–52 Frank A, Berdahl J, Hanson J, Liebig M, Johnson H (2004) Biomass and carbon partitioning in switchgrass. Crop Sci 44:1391–1396 Gnansounou E, Dauriat A, Villegas J, Panichelli L (2009) Life cycle assessment of biofuels: energy and greenhouse gas balances. Bioresour Technol 100:4919–4930 Gu J, Xin Z, Meng X, Sun S, Qiao Q, Deng H (2015) Studies on biodiesel production from DDGS-extracted corn oil at the catalysis of Novozym 435/super absorbent polymer. Fuel 146:33–40 Hajjari M, Tabatabaei M, Aghbashlo M, Ghanavati H (2017) A review on the prospects of sustainable biodiesel production: a global scenario with an emphasis on waste-oil biodiesel utilization. Renew Sust Energ Rev 72:445–464 Halek F, Delavari A, Kavousi-rahim A (2013) Production of biodiesel as a renewable energy source from castor oil. Clean Technol Environ 15:1063–1068 Harris TM, Hottle TA, Soratana K, Klane J, Landis AE (2016) Life cycle assessment of sunflower cultivation on abandoned mine land for biodiesel production. J Clean Prod 112(Part 1):182–195 Helling RK, Russell DA (2009) Use of life cycle assessment to characterize the environmental impacts of polyol production options. Green Chem 11:380–389 Ishikawa S, Hoshiba S, Hinata T, Hishinuma T, Morita S (2006) Evaluation of a biogas plant from life cycle assessment (LCA), International Congress Series. Elsevier, New York, pp 230–233 Javani A, Hasheminejad M, Tahvildari K, Tabatabaei M (2012) High quality potassium phosphate production through step-by-step glycerol purification: a strategy to economize biodiesel production. Bioresour Technol 104:788–790 Jolliet O, Margni M, Charles R, Humbert S, Payet J, Rebitzer G, Rosenbaum R (2003) IMPACT 2002+: a new life cycle impact assessment methodology. Int J Life Cycle Assess 8:324 Kamahara H, Hasanudin U, Widiyanto A, Tachibana R, Atsuta Y, Goto N, Daimon H, Fujie K (2010) Improvement potential for net energy balance of biodiesel derived from palm oil: a case study from Indonesian practice. Biomass Bioenergy 34:1818–1824 Khalife E, Kazeroni H, Mirsalim M, Shojaei TR, Mohammadi P, Salleh AM, Najafi B, Tabatabaei M (2017a) Experimental investigation of low-level water in waste-oil produced biodiesel-diesel fuel blend. Energy 121:331–340 Khalife E, Tabatabaei M, Demirbas A, Aghbashlo M (2017b) Impacts of additives on performance and emission characteristics of diesel engines during steady state operation. Prog Energy Combust Sci 59:32–78 Kim I, Seo YH, Kim G-Y, Han J-I (2015) Co-production of bioethanol and biodiesel from corn stover pretreated with nitric acid. Fuel 143:285–289 Kumar A, Sharma S (2011) Potential non-edible oil resources as biodiesel feedstock: an Indian perspective. Renew Sust Energ Rev 15:1791–1800 Lahane S, Subramanian KA (2015) Effect of different percentages of biodiesel–diesel blends on injection, spray, combustion, performance, and emission characteristics of a diesel engine. Fuel 139:537–545 Larimi YN, Mollahosseini A, Mohammadi P, Tabatabaei M (2016) Waste polymers recycling in biodiesel as a strategy to simultaneously enhance fuel properties and recycle the waste: realistic simulation and economical assessment approach. Biofuels 7:559–570 Larson E (2005) A review of LCA studies on liquid biofuels for the transport sector, Scientific and technical advisory panel of the global environment facility (STAP) workshop on liquid biofuels. New Delhi, India Liang S, Xu M, Zhang T (2013) Life cycle assessment of biodiesel production in China. Bioresour Technol 129:72–77 Luo L, van der Voet E, Huppes G, De Haes HAU (2009) Allocation issues in LCA methodology: a case study of corn stover-based fuel ethanol. Int J Life Cycle Assess 14:529–539 Mazanov SV, Gabitova AR, Usmanov RA, Gumerov FM, Labidi S, Amar MB, Passarello J-P, Kanaev A, Volle F, Neindre BL (2016) Continuous production of biodiesel from rapeseed oil by ultrasonic assist transesterification in supercritical ethanol. J Supercrit Fluid 118:107–118 McLaughlin S, De La Torre UD, Garten C, Lynd L, Sanderson M, Tolbert VR, Wolf D (2002) High-value renewable energy from prairie grasses. Environ Sci Technol 36:2122–2129 Meneghetti SMP, Meneghetti MR, Wolf CR, Silva EC, Lima GES, de Lira SL, Serra TM, Cauduro F, de Oliveira LG (2006) Biodiesel from castor oil: a comparison of ethanolysis versus methanolysis. Energ Fuel 20:2262–2265 Meyer AKP, Raju CS, Kucheryavskiy S, Holm-Nielsen JB (2015) The energy balance of utilising meadow grass in Danish biogas production. Resour Conserv Recycl 104:265–275 Naik SN, Goud VV, Rout PK, Dalai AK (2010) Production of first and second generation biofuels: a comprehensive review. Renew Sust Energy Rev 14:578–597 Nanaki EA, Koroneos CJ (2012) Comparative LCA of the use of biodiesel, diesel and gasoline for transportation. J Clean Prod 20:14–19 Nemecek T, Bengoa X, Lansche J, Mouron P, Rossi V, Humbert S (2014) Methodological guidelines for the life cycle inventory of agricultural products, version 2.0, July 2014, World Food LCA Database (WFLDB). Quantis and Agroscope, Lausanne and Zurich, Switzerland Nemecek T, Schnetzer J, Reinhard J (2016) Updated and harmonised greenhouse gas emissions for crop inventories. Int J Life Cycle Assess 21:1361–1378 Nielsen F, Hill B, de Jongh J (2011) Castor (Ricinus communis) Potential of castor for bio-fuel production. FACT-Arrakis. FACT Foundation. FACT Project no 146 Osamu K, Carl H (1989) Biomass handbook. Gordon Breach Science Publisher, New York Parajuli R, Knudsen MT, Birkved M, Djomo SN, Corona A, Dalgaard T (2017) Environmental impacts of producing bioethanol and biobased lactic acid from standalone and integrated biorefineries using a consequential and an attributional life cycle assessment approach. Sci Total Environ 598:497–512 Paustian K, Antle JM, Sheehan J, Paul EA (2006) Agriculture’s role in greenhouse gas mitigation Pimentel D, Patzek TW (2005) Ethanol production using corn, switchgrass, and wood; biodiesel production using soybean and sunflower. Nat Resour Res 14:65–76 Pinto AC, Guarieiro LL, Rezende MJ, Ribeiro NM, Torres EA, Lopes WA, Pereira PADP, Andrade JBD (2005) Biodiesel: an overview. J Braz Chem Soc 16:1313–1330 Plevin RJ, Delucchi MA, Creutzig F (2014) Using attributional life cycle assessment to estimate climate-change mitigation benefits misleads policy makers. J Ind Ecol 18:73–83 Prechsl UE, Wittwer R, van der Heijden MG, Lüscher G, Jeanneret P, Nemecek T (2017) Assessing the environmental impacts of cropping systems and cover crops: life cycle assessment of FAST, a long-term arable farming field experiment. Agric Syst 157:39–50 Rahimi V, Karimi K, Shafiei M (2016) Techno-economical assessment of castor based biorefinery. Isfahan University of Technology, Isfahan Rajaeifar MA, Ghobadian B, Heidari MD, Fayyazi E (2013) Energy consumption and greenhouse gas emissions of biodiesel production from rapeseed in Iran. J Renew Sust Energ 5:063134 Rajaeifar MA, Ghobadian B, Safa M, Heidari MD (2014) Energy life-cycle assessment and CO2 emissions analysis of soybean-based biodiesel: a case study. J Clean Prod 66:233–241 Rajaeifar MA, Akram A, Ghobadian B, Rafiee S, Heijungs R, Tabatabaei M (2016) Environmental impact assessment of olive pomace oil biodiesel production and consumption: a comparative lifecycle assessment. Energy 106:87–102 Razazi A, Aghaalikhani M, Ghobadian B, Zand B, Safiedin Ardebili M (2014) Energy balance of castor cultivation in Varamin region as a biofuel feedstock (in Persian). Behzaraei’ keshavarzi 17:43–52 Requena JS, Guimaraes AC, Alpera SQ, Gangas ER, Hernandez-Navarro S, Gracia LN, Martin-Gil J, Cuesta HF (2011) Life cycle assessment (LCA) of the biofuel production process from sunflower oil, rapeseed oil and soybean oil. Fuel Process Technol 92:190–199 Romero-Gámez M, Antón A, Leyva R, Suárez-Rey EM (2017) Inclusion of uncertainty in the LCA comparison of different cherry tomato production scenarios. Int J Life Cycle Assess 22:798–811 Sáez-Bastante J, Pinzi S, Jiménez-Romero FJ, Luque de Castro MD, Priego-Capote F, Dorado MP (2015) Synthesis of biodiesel from castor oil: silent versus sonicated methylation and energy studies. Energy Convers Manag 96:561–567 Salmani A, Adl M, Pazoki M (2016) Comparative life cycle assessment of biodiesel production from castor Ricinus cummunis and arugula Eruca sativa (in Persian), 11th International Energy Conference, Tehran, Iran Sandin G, Røyne F, Berlin J, Peters GM, Svanström M (2015) Allocation in LCAs of biorefinery products: implications for results and decision-making. J Clean Prod 93:213–221 Sattanathan R (2015)Production of biodiesel from castor oil with its performance and emission test. Int J Sci Res 4:273-279 Searchinger TD (2010) Biofuels and the need for additional carbon. Environ Res Lett 5:024007 Sebastião D, Gonçalves MS, Marques S, Fonseca C, Gírio F, Oliveira AC, Matos CT (2016) Life cycle assessment of advanced bioethanol production from pulp and paper sludge. Bioresour Technol 208:100–109 Service USNRC (2006) Model simulation of soil loss, nutrient loss, and change in soil organic carbon associated with crop production. US Department of Agriculture, Natural Resources Conservation Service, Washington, D.C Sheehan J, Camobreco V, Duffield J, Graboski M, Shapouri H (1998) Life cycle inventory of biodiesel and petroleum diesel for use in an urban bus. Final report. National Renewable Energy Lab., Golden Shehata MS, Attia AMA, Abdel Razek SM (2015) Corn and soybean biodiesel blends as alternative fuels for diesel engine at different injection pressures. Fuel 161:49–58 Shirvani T, Yan X, Inderwildi OR, Edwards PP, King DA (2011) Life cycle energy and greenhouse gas analysis for algae-derived biodiesel. Energy Environ Sci 4:3773–3778 Shuai W, Chen N, Li B, Zhou D, Gao J (2016) Life cycle assessment of common reed (Phragmites australis (Cav) Trin. ex Steud) cellulosic bioethanol in Jiangsu Province, China. Biomass Bioenergy 92:40–47 da Silva AN, Romanelli TL, Reichardt K (2010) Energy flow in castor bean (Ricinus communis L.) production systems. Sci Agric 67:737–742 Sreenivas P, Mamilla VR, Sekhar KC (2011) Development of biodiesel from castor oil. Int J Energy Sci 1(3):192-197 Srinophakun P, Thanapimmetha A, Rattanaphanyapan K, Sahaya T, Saisriyoot M (2016) Feedstock production for third generation biofuels through cultivation of Arthrobacter AK19 under stress conditions. J Clean Prod 142:1259–1266 Standard I (2006) Environmental management-life cycle assessment—principles and framework. ISO Tabatabaie SMH, Murthy GS (2017) Effect of geographical location and stochastic weather variation on life cycle assessment of biodiesel production from camelina in the northwestern USA. Int J Life Cycle Assess 22:867–882 Tanabe K, Wagner F (2003) Good practice guidance for land use, land-use change and forestry. Institute for Global Environmental Strategies, Hayama, Kanagawa, Japan. Available at: http://www.ipcc-nggip.iges.or.jp/public/gpglulucf/gpglulucf.htm Thamsiriroj T, Murphy J (2009) Is it better to import palm oil from Thailand to produce biodiesel in Ireland than to produce biodiesel from indigenous Irish rape seed? Appl Energy 86:595–604 Uihlein A, Schebek L (2009) Environmental impacts of a lignocellulose feedstock biorefinery system: an assessment. Biomass Bioenergy 33:793–802 Valente OS, Da Silva MJ, Pasa VMD, Belchior CRP, Sodré JR (2010) Fuel consumption and emissions from a diesel power generator fuelled with castor oil and soybean biodiesel. Fuel 89:3637–3642 Van den Berg F, Kubiak R, Benjey W, Majewski M, Yates S, Reeves G, Smelt J, Van der Linden A (1999) Emission of pesticides into the air, fate of pesticides in the atmosphere: implications for environmental risk assessment. Springer, Netherlands, pp 195–218 van Duren I, Voinov A, Arodudu O, Firrisa MT (2015) Where to produce rapeseed biodiesel and why? Mapping European rapeseed energy efficiency. Renew Energ 74:49–59 Van Stappen F, Mathot M, Decruyenaere V, Loriers A, Delcour A, Planchon V, Goffart J-P, Stilmant D (2016) Consequential environmental life cycle assessment of a farm-scale biogas plant. J Environ Manag 175:20–32 Wang W-G, Lyons DW, Clark NN, Gautam M, Norton P (2000) Emissions from nine heavy trucks fueled by diesel and biodiesel blend without engine modification. Environ Sci Technol 34:933–939 Wang Q-L, Li W, Gao X, Li S-J (2016) Life cycle assessment on biogas production from straw and its sensitivity analysis. Bioresour Technol 201:208–214 Wiloso EI, Heijungs R, de Snoo GR (2012) LCA of second generation bioethanol: a review and some issues to be resolved for good LCA practice. Renew Sust Energ Rev 16:5295–5308 Xue X, Collinge WO, Shrake SO, Bilec MM, Landis AE (2012) Regional life cycle assessment of soybean derived biodiesel for transportation fleets. Energ Policy 48:295–303 Yang Y (2013) Life cycle freshwater ecotoxicity, human health cancer, and noncancer impacts of corn ethanol and gasoline in the US. J Clean Prod 53:149–157 Yang Y (2016) Two sides of the same coin: consequential life cycle assessment based on the attributional framework. J Clean Prod 127:274–281 Yang Y, Suh S (2015) Changes in environmental impacts of major crops in the US. Environ Res Lett 10:094016 Zan CS, Fyles JW, Girouard P, Samson RA (2001) Carbon sequestration in perennial bioenergy, annual corn and uncultivated systems in southern Quebec. Agric Ecosyst Environ 86:135–144 Zhang X, Yan S, Tyagi RD, Surampalli RY (2013) Energy balance and greenhouse gas emissions of biodiesel production from oil derived from wastewater and wastewater sludge. Renew Energy 55:392–403 Zhou D, Qi L, Qiao B-Q, Xu Q-Q, Yin J-Z (2017) Continuous production of biodiesel from soybean flakes by extraction coupling with transesterification under supercritical conditions: original research article. J Supercrit Fluid 120:395–402 Zink T, Geyer R, Startz R (2016) A market-based framework for quantifying displaced production from recycling or reuse. J Ind Ecol 20:719–729 Zucaro A, Forte A, Basosi R, Fagnano M, Fierro A (2016) Life cycle assessment of second generation bioethanol produced from low-input dedicated crops of Arundo donax L. Bioresour Technol 219:589–599