Đánh giá vòng đời về dấu chân carbon trong sản xuất thép băng ô tô hai pha

Xiaoqing Fang1,2, Wenqiang Sun1,2,3, Weidong Li4,5, Guangyu Ma5,4
1Department of Energy Engineering, School of Metallurgy, Northeastern University, Shenyang, China
2State Environmental Protection Key Laboratory of Eco-Industry (Northeastern University), Ministry of Ecology and Environment, Shenyang, China
3Liaoning Engineering Research Center of Process Industry Energy Saving and Low-Carbon Technologies, Shenyang, China
4State Key Laboratory of Metal Material for Marine Equipment and Application, Anshan, China
5Ansteel Iron and Steel Research Institute, Ansteel Group Co. Ltd., Anshan, China

Tóm tắt

Khi nhu cầu về các vật liệu ô tô ngày càng gia tăng với các yêu cầu nghiêm ngặt về môi trường, việc tiến hành đánh giá tác động môi trường một cách tỉ mỉ đối với thép băng ô tô hai pha (thép DP) trở nên cần thiết. Tuy nhiên, sự thiếu hụt các nghiên cứu chi tiết và có thể so sánh đã khiến cho dấu chân carbon của thép DP và các nguồn gốc của nó hầu như chưa được biết đến. Nghiên cứu này nhằm khắc phục khoảng trống này bằng cách thiết lập một mô hình vòng đời từ khai thác đến cổng cho thép DP, bao gồm quy trình sản xuất tại chỗ, hệ thống năng lượng và các quy trình thượng nguồn. Phân tích xác định và kiểm tra các yếu tố chính ảnh hưởng đến dấu chân carbon, tập trung vào khai thác thượng nguồn, vận chuyển, và quy trình sản xuất tại chỗ. Kết quả cho thấy dấu chân carbon của thép DP là 2.721 kgCO2-eq/kgDP, với các quy trình tại chỗ đóng góp đáng kể tới 88.1%. Phân tích độ nhạy được sử dụng để đánh giá tác động của những thay đổi trong cấu trúc tài nguyên, năng lượng tại chỗ, các yếu tố phát thải CO2, và việc thu hồi sản phẩm phụ lên dấu chân carbon. Những đề xuất nhằm giảm thiểu phát thải carbon trong sản xuất thép DP bao gồm tăng cường việc thu hồi khí quá trình, chuyển sang các nguồn năng lượng sạch hơn, và giảm tỷ lệ kim loại nóng so với thép. Những phát hiện này cung cấp những hiểu biết quý giá để định hướng sản xuất thép đến những thực hành bền vững với môi trường.

Từ khóa

#thép băng ô tô hai pha #đánh giá vòng đời #dấu chân carbon #sản xuất thép #bền vững môi trường

Tài liệu tham khảo

Akhshik M, Panthapulakkal S, Tjong J, Sain M (2019) The effect of lightweighting on greenhouse gas emissions and life cycle energy for automotive composite parts. Clean Technol Environ Policy 21(3):625–636 Avinal A, Ergenekon P (2022) Life cycle impacts of induction furnace technology for crude steel production: case study. Energy Sources Part A Recover Utilization Environ Eff 44(4):9974–9987 Bahlawan H, Morini M, Spina PR, Venturini M (2021) Inventory scaling, life cycle impact assessment and design optimization of distributed energy plants. Appl Energy 304:117701 Bzowski K, Rauch L, Pietrzyk M (2018) Application of statistical representation of the microstructure to modeling of phase transformations in DP steels by solution of the diffusion equation. Procedia Manuf 15:1847–1855 Chen W, Zhang Q, Wang C, Li Z, Geng Y, Hong JL, Cheng Y (2022) Environmental sustainability challenges of China’s steel production: Impact-oriented water, carbon and fossil energy footprints assessment. Ecol Ind 136:108660 Costa P, Altamirano-Guerrero G, Salinas-Rodriguez A, Salas-Reyes A, Goodwin F (2022) Dilatometric study of continuous cooling transformation of intercritical austenite in cold rolled AHSS-DP steels. J Market Res 19:4360–4370 Fang X, Sun W, Li W, Ma G, Wang P, Zuo C (2024) Process-based life cycle inventory framework for assessing the carbon footprint of products from complex production paths: case of dual-phase automotive strip steel. J Clean Prod 447:141551 Fu W, Sun W, Huo X (2024) Design and thermodynamic investigation of a waste heat-assisted compressed air energy storage system integrating thermal energy storage and organic Rankine cycle. Energ Technol 12(2):2300838 Gonçalves M, Monteiro H, Iten M (2022) Life cycle assessment studies on lightweight materials for automotive applications - an overview. Energy Rep 8:338–345 Gul E, Riva L, Nielsen HK, Yang H, Zhou H, Yang Q, Skreiberg Ø, Wang L, Barbanera M, Zampilli M, Bartocci P, Fantozzi F (2021) Substitution of coke with pelletized biocarbon in the European and Chinese steel industries: an LCA analysis. Appl Energy 304:117644 Hagedorn W, Gramlich A, Greiff K, Krupp U (2022) Alloy and process design of forging steels for better environmental performance. Sustain Mater Technol 34:e00509 Huang Z, Ding X, Sun H, Liu S (2010) Identification of main influencing factors of life cycle CO2 emissions from the integrated steelworks using sensitivity analysis. J Clean Prod 18(10–11):1052–1058 Jhaveri K, Lewis GM, Sullivan JL, Keoleian GA (2018) Life cycle assessment of thin-wall ductile cast iron for automotive lightweighting applications. Sustain Mater Technol 15:1–8 Li F, Chu M, Tang J, Liu Z, Wang J, Li S (2021) Life-cycle assessment of the coal gasification-shaft furnace-electric furnace steel production process. J Clean Prod 287:125075 Li Y, Lv M, Li R, Liu Z (2022) Life cycle assessment of melting reduction treatment for iron and steel waste slag: a case study in Tangshan, China. Resour Conserv Recycl Adv 15:200108 Liang T, Wang S, Lu C, Jiang N, Long W, Zhang M, Zhang R (2020) Environmental impact evaluation of an iron and steel plant in China: normalized data and direct/indirect contribution. J Clean Prod 264:121697 Liu S, Sun W (2023) Attention mechanism-aided data-and knowledge-driven soft sensors for predicting blast furnace gas generation. Energy 262:125498 Liu Y, Li H, Huang S, An H, Santagata R, Ulgiati S (2020) Environmental and economic-related impact assessment of iron and steel production. A call for shared responsibility in global trade. J Clean Prod 269:122239 Liu Z, Cheng S, Liu P (2022) Prediction model of BOF end-point temperature and carbon content based on PCA-GA-BP neural network. Metall Res Technol 119:1–11 Liu Z, Cui Y, Wang J, Yue C, Agbodjan YS, Yang Y (2022) Multi-objective optimization of multi-energy complementary integrated energy systems considering load prediction and renewable energy production uncertainties. Energy 254:124399 Liu SH, Sun WQ, Li WD, Jin BZ (2023) Prediction of blast furnace gas generation based on data quality improvement strategy. J Iron Steel Res Int 30:864–874 Lu Q, Zhang B, Yang S, Peng Z (2022) Life cycle assessment on energy efficiency of hydrogen fuel cell vehicle in China. Energy 257:124731 Ma S, Ding W, Liu Y, Ren S, Yang H (2022) Digital twin and big data-driven sustainable smart manufacturing based on information management systems for energy-intensive industries. Appl Energy 326:119986 Ma S, Zhang Y, Lv J, Ren S, Yang H, Wang C (2022) Data-driven cleaner production strategy for energy-intensive manufacturing industries: case studies from Southern and Northern China. Adv Eng Inform 53:101684 Park H, Woo Y, Jung HS, Kim G, Bae JW, Park MJ (2021) Development of dimethyl ether synthesis processes using by-product gas from a steel-making plant: single-vs. two-step processes. J Clean Prod 326:129367 Raugei M, Morrey D, Hutchinson A, Winfield P (2015) A coherent life cycle assessment of a range of lightweighting strategies for compact vehicles. J Clean Prod 108:1168–1176 Ren L, Zhou S, Peng T, Ou X (2021) A review of CO2 emissions reduction technologies and low-carbon development in the iron and steel industry focusing on China. Renew Sustain Energy Rev 143:110846 Roy P, Defersha F, Rodriguez-Uribe A, Misra M, Mohanty A (2020) Evaluation of the life cycle of an automotive component produced from biocomposite. J Clean Prod 273:123051 Suer J, Traverso M, Ahrenhold F (2021) Carbon footprint of scenarios towards climate-neutral steel according to ISO 14067. J Clean Prod 318:128588 Sun W, Shao Y, Zhao L, Wang Q (2020) Co-removal of CO2 and particulate matter from industrial flue gas by connecting an ammonia scrubber and a granular bed filter. J Clean Prod 257:120511 Sun W, Wang Q, Zheng Z, Cai J (2020) Material–energy–emission nexus in the integrated iron and steel industry. Energy Convers Manage 213:112828 Sun W, Wang Q, Zhou Y, Wu J (2020) Material and energy flows of the iron and steel industry: status quo, challenges and perspectives. Appl Energy 268:114946 Tong Y, Zhang Q, Cai J, Gao C, Wang L, Li P (2018) Water consumption and wastewater discharge in China’s steel industry. Ironmak Steelmak 45(10):868–877 Tong Y, Cai J, Zhang Q, Gao C, Wang L, Li P, Hu S, Liu C, He Z, Yang J (2019) Life cycle water use and wastewater discharge of steel production based on material-energy-water flows: a case study in China. J Clean Prod 241:118410 Voraberger B, Wimmer G, Salgado UD, Wimmer E, Pastucha K, Fleischanderl A (2022) Green LD (BOF) steelmaking—reduced CO2 emissions via increased scrap rate. Metals 12(3):466 Wang J, Sun W (2024) Decomposition of the site-level energy consumption and carbon dioxide emissions of the iron and steel industry. Environ Sci Pollut Res 31(11):16511–16529 Wang J, Wang Q, Sun W (2023) Optimal power system flexibility-based scheduling in iron and steel production: a case of steelmaking–refining–continuous casting process. J Clean Prod 414:137619 Wang J, Wang Q, Sun W (2023) Quantifying flexibility provisions of the ladle furnace refining process as cuttable loads in the iron and steel industry. Appl Energy 342:121178 Yang H, Ma L, Li Z (2023) Tracing China’s steel use from steel flows in the production system to steel footprints in the consumption system. Renew Sustain Energy Rev 172:113040 Yu R, Cong L, Hui Y, Zhao D, Yu B (2022) Life cycle CO2 emissions for the new energy vehicles in China drawing on the reshaped survival pattern. Sci Total Environ 826:154102 Zhang W, Xu J (2022) Advanced lightweight materials for automobiles: a review. Mater Des 221:110994 Zhang H, Sun W, Li W, Wang Y (2022) Physical and chemical characterization of fugitive particulate matter emissions of the iron and steel industry. Atmos Pollut Res 13(1):101272 Zhang Y, Zhang F, Yu H, Yang N, Zhao Y, Yang J, Yu H (2022) Performance evaluation of the practical application of cleaner production management system: a case study of steel enterprise. J Clean Prod 379:134468 Zhang H, Zhao F, Hao H, Liu Z (2023) Comparative analysis of life cycle greenhouse gas emission of passenger cars: a case study in China. Energy 265:126282 Zhou X, Cheng Z, Ren K, Zhai Y, Zhang T, Shen X, Bai Y, Jia Y, Hong J (2022) Environmental sustainability improvement in chloromethanes production based on life cycle assessment. Sustain Prod Consum 34:105–113