Life Within a Contaminated Niche: Comparative Genomic Analyses of an Integrative Conjugative Element ICEnahCSV86 and Two Genomic Islands From Pseudomonas bharatica CSV86T Suggest Probable Role in Colonization and Adaptation
Tóm tắt
Từ khóa
Tài liệu tham khảo
Arciszewska, 1991, Interaction of the Tn7-encoded transposition protein TnsB with the ends of the transposon., Nucleic Acids Res., 19, 5021, 10.1093/nar/19.18.5021
Badhai, 2016, Characterization of three novel SXT/R391 integrating conjugative elements ICEMfuInd1a and ICEMfuInd1b, and ICEMprChn1 identified in the genomes of Marinomonas fungiae JCM 18476T and Marinomonas profundimaris strain D104., Front. Microbiol., 7, 10.3389/fmicb.2016.01896
Baharoglu, 2013, Multiple pathways of genome plasticity leading to development of antibiotic resistance., Antibiotics, 2, 288, 10.3390/antibiotics2020288
Basu, 2006, Preferential utilization of aromatic compounds over glucose by Pseudomonas putida CSV86., Appl. Environ. Microbiol., 72, 2226, 10.1128/AEM.72.3.2226-2230.2006
Basu, 2003, Metabolism of benzyl alcohol via catechol ortho-pathway in methylnaphthalene-degrading Pseudomonas putida CSV86., Appl. Microbiol. Biotechnol., 62, 579, 10.1007/s00253-003-1305-8
Basu, 2008, Conjugative transfer of preferential utilization of aromatic compounds from Pseudomonas putida CSV86., Biodegradation, 19, 83, 10.1007/s10532-007-9117-7
Battle, 2009, Genomic islands of Pseudomonas aeruginosa., FEMS Microbiol. Lett., 290, 70, 10.1111/j.1574-6968.2008.01406.x
Bignell, 2001, The bacterial ParA-ParB partitioning proteins., J. Biotechnol., 91, 1, 10.1016/S0168-1656(01)00293-0
Bohlin, 2010, Analysis of intra-genomic GC content homogeneity within prokaryotes., BMC Genomics, 11, 10.1186/1471-2164-11-464
Bosch, 1999, Genetic characterization and evolutionary implications of a chromosomally encoded naphthalene-degradation upper pathway from Pseudomonas stutzeri AN10., Gene, 236, 149, 10.1016/s0378-1119(99)00241-3
Botelho, 2018, Unravelling the genome of a Pseudomonas aeruginosa isolate belonging to the high-risk clone ST235 reveals an integrative conjugative element housing a blaGES–6 carbapenemase., J. Antimicrob. Chemother., 73, 77, 10.1093/jac/dkx337
Bradford, 1976, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding., Anal. Biochem., 72, 248, 10.1016/0003-2697(76)90527-3
Burlage, 1990, Monitoring of naphthalene catabolism by bioluminescence with nah-lux transcriptional fusions., J. Bacteriol., 172, 4749, 10.1128/jb.172.9.4749-4757.1990
Burrus, 2017, Mechanisms of stabilization of integrative and conjugative elements., Curr. Opin. Microbiol., 38, 44, 10.1016/j.mib.2017.03.014
Burrus, 2002, Conjugative transposons: the tip of the iceberg., Mol. Microbiol., 46, 601, 10.1046/j.1365-2958.2002.03191.x
Calero, 2016, Broad-host-range ProUSER vectors enable fast characterization of inducible promoters and optimization of p-coumaric acid production in Pseudomonas putida KT2440., ACS Synth. Biol., 5, 741, 10.1021/acssynbio.6b00081
Chain, 2006, Burkholderia xenovorans LB400 harbors a multi-replicon, 9.73-Mbp genome shaped for versatility., Proc. Natl. Acad. Sci. U.S.A., 103, 15280, 10.1073/pnas.0606924103
Christie, 2014, Mechanism and structure of the bacterial type IV secretion systems., Biochim. Biophys. Acta. Mol. Cell Res., 1843, 1578, 10.1016/j.bbamcr.2013.12.019
de Lorenzo, 1993, Analysis of Pseudomonas gene products using lacIq/Ptrp-lac plasmids and transposons that confer conditional phenotypes., Gene, 123, 17, 10.1016/0378-1119(93)90533-9
Delavat, 2017, The hidden life of integrative and conjugative elements., FEMS Microbiol. Rev., 41, 512, 10.1093/femsre/fux008
Dobrindt, 2004, Genomic islands in pathogenic and environmental microorganisms., Nat. Rev. Microbiol., 2, 414, 10.1038/nrmicro884
Duttagupta, 2020, Wide exposure of persistent organic pollutants (PoPs) in natural waters and sediments of the densely populated Western Bengal basin, India., Sci. Total Environ., 717, 10.1016/j.scitotenv.2020.137187
Eaton, 1994, Organization and evolution of naphthalene catabolic pathways: sequence of the DNA encoding 2-hydroxychromene-2-carboxylate isomerase and trans-o-hydroxybenzylidenepyruvate hydratase-aldolase from the NAH7 plasmid., J. Bacteriol., 176, 7757, 10.1128/jb.176.24.7757-7762.1994
Fang, 2010, Getting started in gene orthology and functional analysis., PLoS Comput. Biol., 6, 10.1371/journal.pcbi.1000703
Fuentes, 2014, Bioremediation of petroleum hydrocarbons: catabolic genes, microbial communities, and applications., Appl. Microbiol. Biotechnol., 98, 4781, 10.1007/s00253-014-5684-9
Gaillard, 2006, The clc element of Pseudomonas sp. strain B13, a genomic island with various catabolic properties., J. Bacteriol., 188, 1999, 10.1128/JB.188.5.1999-2013.2006
Gerischer, 2002, Specific and global regulation of genes associated with the degradation of aromatic compounds in bacteria., J. Mol. Microbiol. Biotechnol., 4, 111
Hacker, 2001, Ecological fitness, genomic islands and bacterial pathogenicity., EMBO Rep., 2, 376, 10.1093/embo-reports/kve097
Harayama, 1994, Codon usage patterns suggest independent evolution of two catabolic operons on toluene-degradative plasmid TOL pWW0 of Pseudomonas putida., J. Mol. Evol., 38, 328, 10.1007/BF00163150
Hildebrand, 2010, Evidence of selection upon genomic GC-content in bacteria., PLoS Genet., 6, 10.1371/journal.pgen.1001107
Hirose, 2021, A new ICEclc subfamily integrative and conjugative element responsible for horizontal transfer of biphenyl and salicylic acid catabolic pathway in the PCB-degrading strain Pseudomonas stutzeri KF716., Microorganisms, 9, 10.3390/microorganisms9122462
Janssen, 2010, The complete genome sequence of Cupriavidus metallidurans strain CH34, a master survivalist in harsh and anthropogenic environments., PLoS One, 5, 10.1371/journal.pone.0010433
Jiménez, 2004, Genomic insights in the metabolism of aromatic compounds in Pseudomonas, Pseudomonas, 425, 10.1007/978-1-4419-9088-4_15
Johnson, 2015, Integrative and conjugative elements (ICEs): what they do and how they work., Ann. Rev. Genet., 49, 577, 10.1146/annurev-genet-112414-055018
Juhas, 2009, Genomic islands: tools of bacterial horizontal gene transfer and evolution., FEMS Microbiol. Rev., 33, 376, 10.1111/j.1574-6976.2008.00136.x
Jurka, 2007, Repetitive sequences in complex genomes: structure and evolution., Annu. Rev. Genomics Hum. Genet., 8, 241, 10.1146/annurev.genom.8.080706.092416
Klockgether, 2007, Diversity of the abundant pKLC102/PAGI-2 family of genomic islands in Pseudomonas aeruginosa., J. Bacteriol., 189, 2443, 10.1128/JB.0168806
Kumar, 2016, MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets., Mol. Biol. Evol., 33, 1870, 10.1093/molbev/msw054
Lawley, 2004, Bacterial conjugation in gram-negative bacteria., Plasmid Biol., 13, 203
Lechner, 2009, Genomic island excisions in Bordetella petrii., BMC Microbiol., 9, 10.1186/1471-2180-9-141
Lesic, 2004, Excision of the high-pathogenicity island of Yersinia pseudotuberculosis requires the combined actions of its cognate integrase and Hef, a new recombination directionality factor., Mol. Microbiol., 52, 1337, 10.1111/j.1365-2958.2004.04073.x
Liu, 2019, ICEberg 2.0: an updated database of bacterial integrative and conjugative elements., Nucleic Acids Res., 47, D660, 10.1093/nar/gky1123
Mahajan, 1994, Evidence for the involvement of multiple pathways in the biodegradation of 1-and 2-methylnaphthalene by Pseudomonas putida CSV86., Arch. Microbiol., 161, 425, 10.1007/BF00288954
Miyazaki, 2015, Comparative genome analysis of Pseudomonas knackmussii B13, the first bacterium known to degrade chloroaromatic compounds., Environ. Microbiol., 17, 91, 10.1111/1462-2920.12498
Miyazaki, 2012, Cellular variability of RpoS expression underlies subpopulation activation of an integrative and conjugative element., PLoS Genet., 8, 10.1371/journal.pgen.1002818
Mohan, 2017, Carbon source-dependent inducible metabolism of veratryl alcohol and ferulic acid in Pseudomonas putida CSV86., Appl. Environ. Microbiol., 83, 10.1128/AEM.03326-16
Mohapatra, 2022, Functional genome mining and taxono-genomics reveal eco-physiological traits and species distinctiveness of aromatic-degrading Pseudomonas bharatica sp. nov., Environ. Microbiol. Rep., 14, 464, 10.1111/1758-2229.13066
Mohapatra, 2021, Microbial degradation of naphthalene and substituted naphthalenes: metabolic diversity and genomic insight for bioremediation., Front. Bioeng. Biotechnol., 9, 10.3389/fbioe.2021.602445
Neilson, 1999, Factors influencing expression of luxCDABE and nah genes in Pseudomonas putida RB1353 (NAH7, pUTK9) in dynamic systems., Appl. Environ. Microbiol., 65, 3473, 10.1128/AEM.65.8.3473-3482.1999
Nojiri, 2009, Catabolic plasmids involved in the degradation of polycyclic aromatic hydrocarbons and heteroaromatic compounds, Microbial Megaplasmids, 55, 10.1007/978-3-540-85467-8_3
Obi, 2018, The integrative conjugative element clc (ICEclc) of Pseudomonas aeruginosa JB2., Front. Microbiol., 9, 10.3389/fmicb.2018.01532
Paliwal, 2014, Pseudomonas putida CSV86: a candidate genome for genetic bioaugmentation., PLoS One, 9, 10.1371/journal.pone.0084000
Phale, 2020, Degradation strategies and associated regulatory mechanisms/features for aromatic compound metabolism in bacteria., Adv. Appl. Microbiol., 112, 1, 10.1016/bs.aambs.2020.02.002
Phale, 2021, Eco-physiological portrait of a novel Pseudomonas sp. CSV86: an ideal host/candidate for metabolic engineering and bioremediation., Environ. Microbiol., 1, 10.1111/1462-2920.15694
Phale, 2019, Variability in assembly of degradation operons for naphthalene and its derivative, carbaryl, suggests mobilization through horizontal gene transfer., Genes, 10, 10.3390/genes10080569
Poulin-Laprade, 2015, The extended regulatory networks of SXT/R391 integrative and conjugative elements and IncA/C conjugative plasmids., Front. Microbiol., 6, 10.3389/fmicb.2015.00837
Qian, 2005, Comparative and functional genomic analyses of the pathogenicity of phytopathogen Xanthomonas campestris pv. campestris., Genome Res., 15, 757, 10.1101/gr.3378705
Rajanna, 2003, The Vibrio pathogenicity island of epidemic Vibrio cholerae forms precise extrachromosomal circular excision products., J. Bacteriol., 185, 6893, 10.1128/JB.185.23.6893-6901.2003
Ravatn, , Low-frequency horizontal transfer of an element containing the chlorocatechol degradation genes from Pseudomonas sp. strain B13 to Pseudomonas putida F1 and to indigenous bacteria in laboratory-scale activated-sludge microcosms., Appl. Environ. Microbiol., 64, 2126, 10.1128/AEM.64.6.2126-2132.1998
Ravatn, , Chromosomal integration, tandem amplification, and deamplification in Pseudomonas putida F1 of a 105-kilobase genetic element containing the chlorocatechol degradative genes from Pseudomonas sp. strain B13., J. Bacteriol., 180, 4360, 10.1128/JB.180.17.4360-4369.1998
Reva, 2005, Differentiation of regions with atypical oligonucleotide composition in bacterial genomes., BMC Bioinformatics, 6, 10.1186/1471-2105-6-251
Rodríguez-Beltrán, 2020, Genetic dominance governs the evolution and spread of mobile genetic elements in bacteria., Proc. Natl. Acad. Sci. U.S.A., 117, 15755, 10.1073/pnas.2001240117
Ryan, 2009, Novel Tn4371-ICE like element in Ralstonia pickettii and genome mining for comparative elements., BMC Microbiol, 9, 10.1186/1471-2180-9-242
Sentchilo, 2009, Intracellular excision and reintegration dynamics of the ICEclc genomic island of Pseudomonas knackmussii sp. strain B13., Mol. Microbiol., 72, 1293, 10.1111/j.1365-2958.2009.06726.x
Singh, 2013, Metabolic regulation and chromosomal localization of carbaryl degradation pathway in Pseudomonas sp. strains C4, C5 and C6., Arch. Microbiol., 195, 521, 10.1007/s00203-013-0903-9
Strnad, 2011, Complete genome sequence of the haloaromatic acid-degrading bacterium Achromobacter xylosoxidans A8., J. Bacteriol., 193, 791, 10.1128/JB.01299-10
van der Meer, 2003, Genomic islands and the evolution of catabolic pathways in bacteria., Curr. Opin. Biotechnol., 14, 248, 10.1016/S0958-1669(03)00058-2
Verma, 2014, Comparative genomic analysis of nine Sphingobium strains: insights into their evolution and hexachlorocyclohexane (HCH) degradation pathways., BMC Genomics, 15, 10.1186/1471-2164-15-1014
Verma, 2019, Catalytic promiscuity of aromatic ring-hydroxylating dioxygenases and their role in the plasticity of xenobiotic compound degradation, Microbial Metabolism of Xenobiotic Compounds, 123, 10.1007/978-981-13-7462-3_6
Wiegand, 2008, Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances., Nat. Protoc., 3, 163, 10.1038/nprot.2007.521
Wozniak, 2009, Comparative ICE genomics: insights into the evolution of the SXT/R391 family of ICEs., PLoS Genet., 5, 10.1371/journal.pgen.1000786
Wozniak, 2010, Integrative and conjugative elements: mosaic mobile genetic elements enabling dynamic lateral gene flow., Nat. Rev. Microbiol., 8, 552, 10.1038/nrmicro2382
Xu, 2019, OrthoVenn2: a web server for whole-genome comparison and annotation of orthologous clusters across multiple species., Nucleic Acids Res., 47, W52, 10.1093/nar/gkz333