Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Đánh giá vòng đời của sinh khối năng lượng và sản phẩm dựa trên sinh học từ cỏ lâu năm trồng trên đất biên ở khu vực Địa Trung Hải
Tóm tắt
Hệ thống nông nghiệp ở khu vực Địa Trung Hải đang ngày càng chịu áp lực do cả hiện tượng ấm lên toàn cầu và sự cạnh tranh gia tăng về đất nông nghiệp. Cỏ lâu năm có tiềm năng để giải quyết cả hai thách thức này: chúng là những cây trồng kháng hạn và được coi là không cạnh tranh với đất nông nghiệp có năng suất cao vì có thể trồng trên đất biên. Bài báo này trình bày kết quả của một đánh giá vòng đời (LCA) sàng lọc được thực hiện như một phần của đánh giá bền vững tích hợp trong dự án được tài trợ bởi EU ‘Tối ưu hóa cỏ lâu năm cho sản xuất sinh khối’ (OPTIMA). Dự án nhằm tối ưu hóa sản xuất Miscanthus (Miscanthus × giganteus), cần cỏ khổng lồ (Arundo donax L.), cỏ chuyển (Panicum virgatum L.) và aritichoke (Cynara cardunculus L.) trên đất biên trong khu vực Địa Trung Hải. Các tùy chọn canh tác và sử dụng khác nhau đã được điều tra bằng cách so sánh toàn bộ vòng đời của sản phẩm sinh năng lượng và sản phẩm dựa trên sinh học với các sản phẩm thông thường tương đương. Kết quả LCA cho thấy việc canh tác cỏ lâu năm trên đất biên và việc sử dụng chúng cho sản xuất nhiệt và điện tĩnh có thể đạt được sự tiết kiệm lớn về phát thải khí nhà kính và năng lượng không tái tạo, với Miscanthus cho phép tiết kiệm lên tới 13 t CO2 eq./(ha · năm) và 230 GJ/(ha · năm), tương ứng. Tác động môi trường tiêu cực ít rõ ràng hơn. Các tham số quan trọng bao gồm nhu cầu tưới tiêu và độ ẩm tại thời điểm thu hoạch, điều này xác định nhu cầu năng lượng cho quá trình sấy kỹ thuật. Chúng tôi kết luận rằng việc canh tác cỏ lâu năm trên đất biên ở khu vực Địa Trung Hải cung cấp tiềm năng cho việc giảm thiểu biến đổi khí hậu cùng với tác động môi trường khác tương đối thấp, nếu các điều kiện ràng buộc và khuyến nghị khác được đáp ứng.
Từ khóa
#cỏ lâu năm #đất biên #đánh giá vòng đời #khí nhà kính #sản xuất sinh khối #Địa Trung HảiTài liệu tham khảo
United Nations (2015) World population prospects. Key findings and advance tables. 2015 Revision. United Nations Department of Economic and Social Affairs, Population Division, New York, USA
Rettenmaier N, Hienz G (2014) Linkages between socio-economic and environmental impacts of bioenergy. In: Rutz D, Janssen R (eds) Socio-economic impacts bioenergy production. Springer International Publishing Switzerland. doi:10.1007/978-3-319-03829-2_4. Accessed June 12, 2015
Searchinger T, Heimlich R, Houghton RA et al (2008) Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319:1238–1240. doi:10.1126/science.1151861
Fargione J, Hill J, Tilman D et al (2008) Land clearing and the biofuel carbon debt. Science 319:1235–1238. doi:10.1126/science.1152747
Gibbs HK, Johnston M, Foley JA et al (2008) Carbon payback times for crop-based biofuel expansion in the tropics: the effects of changing yield and technology. Environ Res Lett 3:034001. doi:10.1088/1748-9326/3/3/034001
Gallagher E (2008) The Gallagher review of the indirect effects of biofuels production. Renewable Fuels Agency, Sussex, England
Melillo JM, Reilly JM, Kicklighter DW et al (2009) Indirect emissions from biofuels: how important? Science 326:1397–1399. doi:10.1126/science.1180251
Ravidranath N, Manuvie R, Fargione J, et al. (2009) Greenhouse gas implications of land use and land conversion to biofuel crops. In: Howarth R, Bringezu S (eds) Biofuels: Environmental consequences and interactions with changing land use. Proceedings of the Scientific Committee on Problems of the Environment (SCOPE), International Biofuels Project Rapid Assessment, 22–25 September 2008, Gummersbach, Germany. Cornell University, Ithaca NY, USA, pp 111–125
Black E (2009) The impact of climate change on daily precipitation statistics in Jordan and Israel. Atmos Sci Lett 10:192–200. doi:10.1002/asl.233
Metzger M, Bunce R, Jongman R et al (2005) A climatic stratification of the environment of Europe. Glob Ecol Biogeogr 14:549–563
Rosenzweig C, Tubiello F (1997) Impacts of global climate change on Mediterranean agriculture: current methodologies and future directions: an introductory essay. Mitig Adapt Strateg Glob Chang 01:219–232. doi:10.1017/S0020818300013448
Rettenmaier N, Schorb A, Hienz G, Diaz-Chavez R (2012) Report on sustainability impacts of the use of marginal areas and grassy biomass (Deliverable 5.4). Global-Bio-Pact project reports. Institute for Energy and Environmental Research (IFEU), Heidelberg, Germany. http://www.globalbiopact.eu/images/stories/publications/d5_4.pdf. Accessed June 12, 2015
Clifton-Brown JC, Stampfl PF, Jones MB (2004) Miscanthus biomass production for energy in Europe and its potential contribution to decreasing fossil fuel carbon emissions. Glob Chang Biol 10:509–518. doi:10.1111/j.1529-8817.2003.00749.x
Styles D, Jones MB (2008) Life-cycle environmental and economic impacts of energy-crop fuel-chains: an integrated assessment of potential GHG avoidance in Ireland. Environ Sci Policy 11:294–306. doi:10.1016/j.envsci.2008.01.004
Rowe RL, Street NR, Taylor G (2009) Identifying potential environmental impacts of large-scale deployment of dedicated bioenergy crops in the UK. Renew Sustain Energy Rev 13:271–290. doi:10.1016/j.rser.2007.07.008
Tonini D, Hamelin L, Wenzel H, Astrup T (2012) Bioenergy production from perennial energy crops: a consequential LCA of 12 bioenergy scenarios including land use changes. Environ Sci Technol 46:13521–13530. doi:10.1021/es3024435
van Dam J, Faaij APC, Hilbert J et al (2009) Large-scale bioenergy production from soybeans and switchgrass in Argentina. Part B. Environmental and socio-economic impacts on a regional level. Renew Sustain Energy Rev 13:1679–1709. doi:10.1016/j.rser.2009.03.012
Bai Y, Luo L, Van Der Voet E (2010) Life cycle assessment of switchgrass-derived ethanol as transport fuel. Int J Life Cycle Assess 15:468–477. doi:10.1007/s11367-010-0177-2
Cherubini F, Jungmeier G (2009) LCA of a biorefinery concept producing bioethanol, bioenergy, and chemicals from switchgrass. Int J Life Cycle Assess 15:53–66. doi:10.1007/s11367-009-0124-2
Wang M, Han J, Dunn JB et al (2012) Well-to-wheels energy use and greenhouse gas emissions of ethanol from corn, sugarcane and cellulosic biomass for US use. Environ Res Lett 7:045905. doi:10.1088/1748-9326/7/4/045905
Bergman RD, Reed DL, Taylor AM et al (2015) Cradle-to-gate life cycle assessment of switchgrass fuel pellets manufactured in the Southeastern United States. Wood Fiber Sci 47:1–13
Kretschmer W, Capaccioli S, Chiaramonti D, et al. (2013) Integrated sustainability assessment of BIOLYFE second generation bioethanol. BIOLYFE project reports. Institute for Environmental Studies Weibel & Ness (IUS), Heidelberg, Germany. http://www.biolyfe.eu/images/stories/downloads/BIOLYFE-Integrated%20sustainability%20assessment.pdf. Accessed June 12, 2015
Lewandowski I, Scurlock JMO, Lindvall E, Christou M (2003) The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass and Bioenergy 25:335–361. doi:10.1016/S0961-9534(03)00030-8
Smeets EMW, Lewandowski IM, Faaij APC (2009) The economical and environmental performance of Miscanthus and switchgrass production and supply chains in a European setting. Renew Sustain Energy Rev 13:1230–1245. doi:10.1016/j.rser.2008.09.006
Torres CM, Ríos SD, Torras C et al (2013) Sustainability analysis of biodiesel production from Cynara cardunculus crop. Fuel 111:535–542. doi:10.1016/j.fuel.2013.04.021
Dufour J, Arsuaga J, Moreno J (2013) Life cycle assessment of biodiesel production from cardoon (Cynara cardunculus) oil obtained under Spain conditions. Energy & Fuels 27:5280–5286. doi: dx.doi.org/10.1021/ef400951f
Rettenmaier N, Köppen S, Gärtner SO, Reinhardt GA (2010) Life cycle assessment of selected future energy crops for Europe. Biofuels, Bioprod Bioref 620–636. doi: 10.1002/bbb.245
Scheurlen K, Reinhardt GA, Gärtner SO (2005) Environmental assessment. BIO-ENERGY CHAINS project reports. Institute for Environmental Studies Weibel & Ness (IUS), Heidelberg, Germany
Monti A, Fazio S, Venturi G (2009) Cradle-to-farm gate life cycle assessment in perennial energy crops. Eur J Agron 31:77–84. doi:10.1016/j.eja.2009.04.001
Fazio S, Monti A (2011) Life cycle assessment of different bioenergy production systems including perennial and annual crops. Biomass and Bioenergy 35:4868–4878. doi:10.1016/j.biombioe.2011.10.014
Forte A, Zucaro A, Fagnano M et al (2015) LCA of Arundo donax L. lignocellulosic feedstock production under Mediterranean conditions. Biomass and Bioenergy 73:32–47. doi:10.1016/j.biombioe.2014.12.005
Zucaro A, Forte A, Fagnano M et al (2015) Comparative attributional life cycle assessment of annual and perennial lignocellulosic feedstocks production under Mediterranean climate for biorefinery framework. Integr Environ Assess Manag 9999:1–7. doi:10.1002/ieam.1604
Dale VH, Kline KL, Wiens J, Fargione J (2010) Biofuels: implications for land use and biodiversity. The Ecological Society of America, Washington, USA. http://www.esa.org/biofuelsreports/files/ESA%20Biofuels%20Report_VH%20Dale%20et%20al.pdf. Accessed June 12, 2015
Wicke B (2011) Bioenergy production on degraded and marginal land. Assessing its potentials, economic performance, and environmental impacts for different settings and geographical scales. Utrecht University, Copernicus Institute. Utrecht, The Netherlands. http://dspace.library.uu.nl/handle/1874/203772. Accessed June 12, 2015
Gelfand I, Sahajpal R, Zhang X et al (2013) Sustainable bioenergy production from marginal lands in the US Midwest. Nature 493:514–7. doi:10.1038/nature11811
Rettenmaier N, Gärtner S, Keller H, et al. (2015) Report on life cycle assessment (Part B of Deliverable 7.10: Final report on tasks 7.1, 7.2 and 7.4). OPTIMA project reports. Institute for Energy and Environmental Research (IFEU), Heidelberg, Germany
ISO (2006) ISO 14040:2006—Environmental management—life cycle assessment—principles and framework. International Organization for Standardization
ISO (2006) ISO 14044:2006—Environmental management—life cycle assessment—requirements and guidelines. International Organization for Standardization
Fernando AL, Duarte MP, Almeida J et al (2010) Environmental impact assessment of energy crops cultivation in Europe. Biofuel Bioprod Bioref 4:594–604
Reinhardt GA, Cornelius C (2014) Report on environmental assessment (Deliverable 6.3). SWEETFUEL project reports. Institute for Energy and Environmental Research (IFEU), Heidelberg, Germany. http://www.ifeu.de/landwirtschaft/pdf/IFEU-SWEETFUEL-D6.3%20environmental%20report%20.pdf. Accessed June 12, 2015
Rettenmaier N, Harter R, Himmler H, et al. (2013) Environmental sustainability assessment of the BIOCORE biorefinery concept (Deliverable 7.5). BIOCORE project reports. Institute for Energy and Environmental Research (IFEU), Heidelberg, Germany. http://www.biocore-europe.org/file/BIOCORE_D7_5_Environmental%20assessment_2014-05-15.pdf. Accessed June 12, 2015
Fernando AL, Boléo S, Barbosa B, et al. (2015) Report on Environmental Impact Assessment (Deliverable 6.13). OPTIMA project reports. FCT-UNL, Lisbon, Portugal
Fernando AL, Boléo S, Barbosa B, et al. (2015) Perennial grass production opportunities on marginal Mediterranean land. Bioenergy Res., this issue
van den Berg D, de Jamblinne P, Rettenmaier N, et al. (2015) Report on Technological assessment (Part A of Deliverable 7.10: Final report on tasks 7.1, 7.2 and 7.4). OPTIMA project reports. BTG / 2ZK / IFEU, Enschede, The Netherlands / Nivelles, Belgium / Heidelberg, Germany
Rettenmaier N, Detzel A, Keller H, et al. (2014) Ökologische Innovationspolitik—mehr Ressourceneffizienz und Klimaschutz durch nachhaltige stoffliche Nutzungen von Biomasse [Environmental Innovation Policy—greater resource efficiency and climate protection through the sustainable material use of biomass]. In: UBA Texte 01/2014. Umweltbundesamt (Federal Environment Agency), Dessau-Roßlau, Germany
Reinhardt G, Gärtner S, Häfele S, et al. (2012) Sustainable and integrated production of liquid biofuels, green chemicals and bioenergy from glycerol in biorefineries: environmental assessment (Deliverable 7.5). GLYFINERY project reports. Institute for Energy and Environmental Research (IFEU), Heidelberg, Germany. http://www.ifeu.de/landwirtschaft/pdf/GlyfineryD75-Environmental%20assessment.pdf. Accessed June 12, 2015
Gärtner S, Hienz G, Keller H, Müller-Lindenlauf M (2013) Gesamtökologische Bewertung der Kaskadennutzung von Holz. Umweltauswirkungen stofflicher und energetischer Holznutzungssysteme im Vergleich [Environmental assessment of cascading use of wood. Comparison of environmental impacts of material and energy use systems of wood]. Institute for Energy and Environmental Research (IFEU), Heidelberg, Germany. http://www.ifeu.de/landwirtschaft/pdf/IFEU%202013_Umweltbewertung%20Holzkaskadennutzung.pdf. Accessed June 12, 2015
JRC-IES (2010) International Reference Life Cycle Data System (ILCD) Handbook: general guide for life cycle assessment—detailed guidance. Ispra, Italy. doi: 10.2788/38479
Havlík P, Schneider UA, Schmid E et al (2011) Global land-use implications of first and second generation biofuel targets. Energy Policy 39:5690–5702. doi:10.1016/j.enpol.2010.03.030
Britz W, Hertel TW (2011) Impacts of EU biofuels directives on global markets and EU environmental quality: an integrated PE, global CGE analysis. Agric Ecosyst Environ 142:102–109. doi:10.1016/j.agee.2009.11.003
Taheripour F, Hertel TW, Tyner WE et al (2010) Biofuels and their by-products: global economic and environmental implications. Biomass and Bioenergy 34:278–289. doi:10.1016/j.biombioe.2009.10.017
Nocentini A, Di Virgilio N, Monti A (2015) Model simulation of cumulative carbon sequestration by switchgrass (Panicum virgatum L.) in the Mediterranean area using the DAYCENT model. Bioenergy Res. doi:10.1007/s12155-015-9672-4
Larson ED (2006) A review of life-cycle analysis studies on liquid biofuel systems for the transport sector. Energy Sustain Dev 10:109–126. doi:10.1016/S0973-0826(08)60536-0
IFEU (2015) Continuously updated internal IFEU database. Institute for Energy and Environmental Research (IFEU), Heidelberg, Germany
Klobasa M, Sensfuß F, Ragwitz M (2009) CO2—Minderung im Stromsektor durch den Einsatz erneuerbarer Energien im Jahr 2006 und 2007 [CO2 abatement in the electricity sector by renewable energies for 2006 and 2007]. Fraunhofer ISI, Karlsruhe, Germany. http://www.erneuerbare-energien.de/EE/Redaktion/DE/Downloads/Gutachten/co2-minderung-stromsektor-2006-07.pdf?__blob=publicationFile&v=2. Accessed June 12, 2015
Memmler M, Merkel K, Pabst J, et al. (2013) Emissionsbilanz erneuerbarer Energieträger—bestimmung der vermiedenen Emissionen im Jahr 2012 [Emission balance of renewable energies—determination of avoided emissions in 2012]. In: UBA Climate Change 15/30. Umweltbundesamt (Federal Environment Agency), Dessau-Roßlau, Germany. https://www.umweltbundesamt.de/sites/default/files/medien/378/publikationen/climate_change_15_2013_emissionsbilanz_erneuerbarer_energietraeger.pdf. Accessed June 12, 2015
Ecoinvent (2010) Ecoinvent database v2.2. Swiss Centre for Life Cycle Inventories, Dübendorf, Switzerland
Goedkoop M, Heijungs R, Huijbregts M, et al. (2014) ReCiPe 2008: a life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level. First edition (revised) and data table version 1.11. Report I: Characterisation. Amersfoort, Leiden, Nijmegen, Bilthoven, The Netherlands. http://www.lcia-recipe.net/file-cabinet. Accessed June 12, 2015
Ravishankara AR, Daniel JS, Portmann RW (2009) Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326:123–5. doi:10.1126/science.1176985
WMO (World Meteorological Organization) (2010) Scientific assessment of ozone depletion: 2010. Geneva, Switzerland. https://www.wmo.int/pages/prog/arep/gaw/ozone_2010/ozone_asst_report.html. Accessed June 12, 2015
VDI (Association of German Engineers) (2012) VDI Standard 4600: cumulative energy demand—terms, definitions, methods of calculation. Beuth Verlag GmbH, Düsseldorf, Berlin, Germany. http://www.vdi.eu/nc/guidelines/vdi_4600-kumulierter_energieaufwand_kea_begriffe_berechnungsmethoden/. Accessed June 12, 2015
Borken J, Patyk A, Reinhardt GA (1999) Basisdaten für ökologische Bilanzierungen. Vieweg, Braunschweig, Wiesbaden
Capros A, De Vita N, Tasios D, et al. (2013) EU energy, transport and GHG emissions: trends to 2050. Reference Scenario 2013. Publications Office of the European Union, Luxembourg. http://ec.europa.eu/transport/media/publications/doc/trends-to-2050-update-2013.pdf. Accessed June 12, 2015
International Energy Agency (2012) World Energy Outlook 2012. Paris, France. http://www.worldenergyoutlook.org/publications/weo-2012/. Accessed June 12, 2015
Sternberg A, Bardow A (2015) Power-to-what?—environmental assessment of energy storage systems. Energy Environ Sci 8:389–400. doi:10.1039/C4EE03051F
Keller H, Gärtner S, Müller-Lindenlauf M, et al. (2014) Environmental assessment of SUPRABIO biorefineries. SUPRABIO project reports. Institute for Energy and Environmental Research (IFEU), Heidelberg, Germany. https://www.ifeu.de/landwirtschaft/pdf/IFEU_&_IUS_2014_Environmental%20assessment%20of%20SUPRABIO%20biorefineries_Update%20of%202014-10-31.pdf. Accessed June 12, 2015