Lie symmetry methods applied to the turbulent wake of a symmetric self-propelled body
Tài liệu tham khảo
Tennekes, 1971, 113
Hutchinson, 2015, Solutions for the turbulent classical wake using Lie symmetry methods, Commun. Nonlinear Sci. Numer. Simul., 23, 51, 10.1016/j.cnsns.2014.10.006
Birkhoff, 1957
Herczynski, 2004, Two-fluid jets and wakes, Phys. Fluids, 16, 1037, 10.1063/1.1651481
Goldstein, 1993, On the two-dimensional steady flow of a viscous fluid behind a solid body, Proc. R. Soc. Lond. Math. Phys. Eng. Sci., 142, 545
Rotem, 1966, A note on boundary-layer solutions for pseudoplastic fluids, Chem. Eng. Sci., 21, 618, 10.1016/0009-2509(66)85076-5
Weidman, 2001, The laminar axisymmetric wake for power-law fluids, Acta Mech., 146, 239, 10.1007/BF01246735
Unal, 1994, Application of equivalence transformations to inertial subrange of turbulence, vol. 1, 232
Ibragimov, 1994, Lie groups in turbulence, vol. 1, 98
Oberlack, 2001, A unified approach for symmetries in plane parallel turbulent shear flows, J. Fluid Mech., 42, 299, 10.1017/S0022112000002408
Naz, 2009, Conservation laws and conserved quantities for the laminar two-dimensional and radial jets, Nonlinear Anal.: Real World Appl., 10, 2641, 10.1016/j.nonrwa.2008.07.003
Naz, 2008, Comparison of different approaches to conservation laws for some partial differential equations in fluid mechanics, Appl Math. Comput., 205, 212, 10.1016/j.amc.2008.06.042
Mason, 2002, Group invariant solution and conservation law for a free laminar two-dimensional jet, J. Nonlinear Math. Phys., 9, S92, 10.2991/jnmp.2002.9.s2.8
Ruscic, 2004, Group invariant solution and conservation law for a steady laminar axisymmetric free jet, Quest. Math., 27, 171, 10.2989/16073600409486092
Mason, 2008, Group invariant solution for a two-dimensional turbulent free jet described by eddy viscosity, J. Nonlinear Math. Phys., 15, S146-S-160, 10.2991/jnmp.2008.15.s1.12
Vinogradov, 1978, A spectral sequence associated with a nonlinear differential equation and algebra-geometric foundations of Lagrangian field theory with constraints, Sov. Math. Dokl., 19, 144
Vinogradov, 1989, Symmetries and conservation laws of partial differential equations: basic notions and results, Acta Appl. Math., 15, 3, 10.1007/BF00131928
Kara, 2000, Relationship between symmetries and conservation laws, Int. J. Theor. Phys., 39, 23, 10.1023/A:1003686831523
Kara, 2002, A basis of conservation laws for partial differential equations, J. Nonlinear Math. Phys., 9, S60, 10.2991/jnmp.2002.9.s2.6
Olver, 1986, vol. 107
Bluman, 2002, vol. 154
Bluman, 2010, vol. 168
Anco, 2002, Direct construction method for conservation laws of partial differential equations. Part I: examples of conservation law classifications, Eur. J. Appl. Math., 13, 545, 10.1017/S095679250100465X
Anco, 2002, Direct construction method for conservation laws of partial differential equations. Part II: general treatment, Eur. J. Appl. Math., 13, 567, 10.1017/S0956792501004661
Krasilshchik, 1999, vol. 182
Sjöberg, 2007, Double reduction of PDEs from the association of symmetries with conservation laws with applications, Appl. Math. Comput., 184, 608, 10.1016/j.amc.2006.06.059
Naz, 2008, Group invariant solutions for two-dimensional free, wall and liquid jets having finite fluid velocity at orifice, World Acad. Sci. Eng. Technol., 43, 275
Mason, 2013, Invariant solution for an axisymmetric turbulent free jet using a conserved vector, Commun. Nonlinear Sci. Numer. Simul., 18, 1607, 10.1016/j.cnsns.2012.11.020
Anthonyrajah, 2010, Conservation laws and invariant solution in the Fanno model for turbulent compressible flow, Math. Comput. Appl., 15, 529
Schlichting, 1968
Boussinesq, 1877, Théorie de l’écoulement tourbillant, Mém. Prés. Acad. Sci., 23, 46
Pope, 2000, 92
Ibragimov, 1994, One-parameter transformation groups, vol. 1, 7
Glauert, 1956, The wall jet, J. Fluid Mech., 1, 625, 10.1017/S002211205600041X