Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Phân tích nhóm Lie, nghiệm chính xác và định luật bảo toàn cho phương trình Navier–Stokes đẳng nhiệt nén được
Tóm tắt
Nghiên cứu hiện tại dành cho các phương trình Navier–Stokes đẳng nhiệt nén một chiều với luật áp suất tổng quát. Phương pháp Nhóm Lie được sử dụng để chuyển các phương trình Navier–Stokes đẳng nhiệt nén thành một hệ các phương trình vi phân thường phi tuyến cao có các biến đổi tương đồng phù hợp. Do đó, với sự trợ giúp của các nghiệm chính xác của các phương trình vi phân thường đã được giảm bớt, biến tương đồng và nghiệm tương đồng, các nghiệm chính xác của phương trình chính được thu được. Cuối cùng, bằng cách sử dụng hệ số bảo toàn, chúng tôi tìm thấy tập hợp hoàn chỉnh các định luật bảo toàn địa phương của các phương trình Navier–Stokes đẳng nhiệt nén cho các hệ số hằng số tùy ý.
Từ khóa
#Navier–Stokes #đẳng nhiệt #bảo toàn #phương trình vi phân thường #nhóm LieTài liệu tham khảo
Armbruster D, Degond P, Ringhofer CA (2006) A model for the dynamics of large queueing networks and supply chains. SIAM J Appl Math 66:896–920
Armbruster D, Degond P, Ringhofer CA (2007) Kinetic and fluid models for supply chains supporting policy attributes. Bull Inst Math Acad Sin 2:433–460
Cascone A, D’Apice C, Piccoli B, Rarità L (2007) Optimization of traffic on road networks. Math Models Methods Appl Sci 17:1587–1617
Cascone A, D’Apice C, Piccoli B, Rarità L (2008) Circulation of car traffic in congested urban areas. Commun Math Sci 6:765–784
Cascone A, Manzo R, Piccoli B, Rarità L (2008) Optimization versus randomness for car traffic regulation. Phys Rev E 78:026113-5
Cutolo A, Nicola CD, Manzo R, Rarità L (2012) Optimal paths on urban networks using travelling times prevision. Model Simul Eng 2012:1–9
Cutolo A, Piccoli B, Rarità L (2011) An Upwind-Euler scheme for an ODE-PDE model of supply chains. SIAM J Sci Comput 33:1669–1688
Daganzo C (2003) A theory of supply chains. Springer, New York, Berlin, Heidelberg
D’Apice C, Kogut PI, Manzo R (2014) On relaxation of state constrained optimal control problem for a PDE-ODE model of supply chains. Netw Heterogeneous Media 9:501–518
D’Apice C, Manzo R, Piccoli B (2010) Existence of solutions to Cauchy problems for a mixed continuum-discrete model for supply chains and networks. J Math Anal Appl 362:374–386
D’Apice C, Manzo R, Rarità L (2011) Splitting of traffic flows to control congestion in special events. Int J Math Math Sci 2011:1–18
Manzo R, Piccoli B, Rarità L (2012) Optimal distribution of traffic flows at junctions in emergency cases. Eur J Appl Math 23:515–535
Rarità L, D’Apice C, Piccoli B, Helbing D (2010) Sensitivity analysis of permeability parameters for flows on Barcelona networks. J Differ Equ 249:3110–3131
Falco MD, Gaeta M, Loia V, Rarita L, Tomasiello S (2016) Differential Quadrature-based numerical solutions of a fluid dynamic model for supply chains. Commun Math Sci 14:1467–1476
Hoff D (1998) Global solutions of the equations of one-dimensional, compressible flow with large data and forces, and with differing end states. Z Angew Math Phys 49:774–785
Ding S, Wena H, Zhu C (2011) Global classical large solutions to 1D compressible Navier-Stokes equations with density-dependent viscosity and vacuum. J Differ Equ 251:1696–1725
Fang D, Zhang T (2006) Compressible Navier-Stokes equations with vacuum state in the case of general pressure law. Math Meth Appl Sci 29:1081–1106
Schrecher MRI, Schulz S (2019) Vanishing viscosity limit of the compressible Navier-Stokes equations with general pressure law. SIAM J Math Anal 51:2168–2205
Hoff D, Serre D (1991) The failure of continuous dependence on initial data for the Navier-Stokes equations of compressible flow. SIAM J Appl Math 51:887–898
Liu TP, Xin Z, Yang T (1998) Vacuum states of compressible flow. Discrete Cont Dyn Sci 4:1–32
Xin Z (1998) Blow-up of smooth solution to the compressible Navier-Stokes equations with compact density. Comm Pure Appl Math 51:229–240
Olver PJ (1993) Applications of Lie Groups to Differential Equations. Springer, New York
Ovsiannikov LV (1982) Group analysis of differential equations. Academic Press, New York
Bluman GW, Kumei S (1989) Symmetries and Differential Equations. Springer, New York
Kumar V, Gupta RK, Jiwari R (2013) Comparative study of travelling wave and numerical solutions for the coupled short pulse (CSP) equation. Chin Phys B 22:050201
Gupta RK, Kumar V, Jiwari R (2014) Exact and numerical solutions of coupled short pulse equation with time-dependent coefficients. Nonlinear Dyn 79:455–464
Singh K, Gupta RK (2006) Lie symmetries and exact solutions of a new generalized Hirota Satsuma coupled KdV system with variable coefficients. Int J Eng Sci 44:241–255
Singh K, Gupta RK (2006) Exact solutions of a variant Boussinesq system. Int J Eng Sci 44:1256–1268
Kumar V, Alqahtani A (2017) Lie symmetry analysis, soliton and numerical solutions of boundary value problem for variable coefficients coupled KdV-Burgers equation. Nonlinear Dyn 90:2903–2915
Gupta RK, Bansal A (2013) Painlevé analysis, Lie symmetries and invariant solutions of potential Kadomstev-Petviashvili equation with time dependent coefficients. Appl Math Comput 219:5290–5302
Alqahtani A, Kumar V (2019) Soliton solutions to the time-dependent coupled KdV-Burgers’ equation. Adv Differ Equ 1:1–16
Yunqing Y, Yong C (2011) Prolongation structure of the equation studied by qiao. Commun Theor Phys 56:463–466
Bluman GW (2005) Temuerchaolu, Conservation laws for nonlinear telegraph equations. J Math Anal Appl 310:459–476
Ibragimov NH (2007) A new conservation theorem. J Math Anal Appl 333:311–328
Anco S, Bluman GW (2002) Direct construction method for conservation laws of partial differential equations part II: general treatment. Eur J Appl Math 13:567–585
D’Apice C, Kogut PI, Manzo R (2010) On approximation of entropy solutions for one system of nonlinear hyperbolic Conservation laws with impulse source terms. J Control Sci Eng 2010:1–10
Kogut PI, Manzo R (2013) On vector-valued approximation of state constrained optimal control problems for nonlinear hyperbolic conservation laws. J Dyn Control Syst 19:381–404
Dafermos C (1999) Hyperbolic conservation laws in continuum physics. Springer, Berlin
Bressan A (2000) Hyperbolic systems of conservation laws-the one-dimensional cauchy problem. Oxford University Press, Oxford