Lie bialgebras of a family of Lie algebras of Block type

Junbo Li1, Yucai Su2, Bin Xin2
1Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240, China
2Department of Mathematics, University of Science and Technology of China, Hefei, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Drinfeld, V. G., Constant quasiclassical solutions of the Yang-Baxter quantum equation, Soviet Math. Dokl., 28(3), 1983, 667–671.

Drinfeld, V. G., Quantum groups, Proceeding of the International Congress of Mathematicians, Vol. 1–2, Berkeley, Calif. 1986, Amer. Math. Soc., Providence, RI, 1987, 798–820.

Michaelis, W., A class of infinite-dimensional Lie bialgebras containing the Virasoro algebras, Adv. Math., 107, 1994, 365–392.

Michaelis, W., Lie coalgebras, Adv. Math., 38, 1980, 1–54.

Michaelis, W., The dual Poincare-Birkhoff-Witt theorem, Adv. Math., 57, 1985, 93–162.

Ng, S. H. and Taft, E. J., Classification of the Lie bialgebra structures on the Witt and Virasoro algebras, J. Pure Appl. Algebra, 151, 2000, 67–88.

Nichols, W. D., The structure of the dual Lie coalgebra of the Witt algebra, J. Pure Appl. Algebra, 68, 1990, 359–364.

Song, G. and Su, Y., Lie bialgebras of generalized Witt type, Sci. in China, Ser. A, 49(4), 2006, 533–544.

Taft, E. J., Witt and Virasoro algebras as Lie bialgebras, J. Pure Appl. Algebra, 87, 1993, 301–312.

Wu, Y., Song, G. and Su, Y., Lie bialgebras of generalized Virasoro-like type, Acta Math. Sin., Engl. Ser., 22, 2006, 1915–1922.

Hu, N. and Wang, X., Quantizations of generalized-Witt algebra and of Jacobson-Witt algebra in modular case, J. Algebra, 312, 2007, 902–929.

Song, G., Su, Y. and Wu, Y., Quantization of generalized Virasoro-like algebras, Linear Algebra Appl., 428, 2008, 2888–2899.

Su, Y., Quasifinite representations of a family of Lie algebras of Block type, J. Pure Appl. Algebra, 192, 2004, 293–305.

Xu, X., Generalizations of the Block algebras, Manuscripta Math., 100, 1999, 489–518.

Xu, X., New generalized simple Lie algebras of Cartan type over a field with characteristic 0, J. Algebra, 224, 2000, 23–58.