Mức độ sao chép virus gây suy giảm miễn dịch ở người loại 1 (HIV-1) trong đại thực bào xác định mức độ nghiêm trọng của viêm não HIV-1 ở chuột

Journal of NeuroVirology - Tập 10 - Trang 82-90 - 2004
Adeline Nukuna1,2,3,4, Howard E. Gendelman1,2,3,5, Jenae Limoges1,5, Jennifer Rasmussen1,2,3, Larisa Poluektova1,2,3, Anuja Ghorpade1,2,3, Yuri Persidsky1,2,3
1Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, USA
2Department of Pathology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, USA
3Department of Microbiology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, USA
4Creighton University School of Medicine, Omaha, USA
5Department of Internal Medicine, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, USA

Tóm tắt

Sự hiện diện của các chủng virus xâm nhập thần kinh đặc hiệu và nhu cầu sao chép virus trong não cho sự tiến triển của bệnh vẫn còn là những vấn đề gây tranh cãi trong nghiên cứu HIV thần kinh. Để điều tra những câu hỏi này, các tác giả đã tiêm các đại thực bào thu được từ mono bào người (MDMs) bị nhiễm virus với các chủng virus khác nhau vào vùng đuôi và vỏ não đuôi của chuột SCID (thiếu hụt miễn dịch kết hợp nặng). Bất kể chủng virus là gì, các MDMs bị nhiễm đã trở nên hoạt hóa miễn dịch và gây ra các phản ứng viêm sâu sắc trong các khu vực của não mà con người bị ảnh hưởng nhiều nhất. Cường độ của các thay đổi thần kinh học, bao gồm các phản ứng của vi microglia, tương ứng với mức độ nhiễm virus và số lượng MDMs bị nhiễm. Dữ liệu gợi ý rằng bệnh lý thần kinh liên quan đến HIV-1 có liên quan đến mức độ nhiễm virus sinh sản trong các đại thực bào đã hoạt hóa. Nhiễm virus, bản thân nó, có thể ảnh hưởng đến khả năng của các đại thực bào trong việc phản ứng với các kích thích miễn dịch bằng cách sản xuất quá mức các yếu tố tiền viêm và các neurotoxin, dẫn đến rối loạn chức năng thần kinh.

Từ khóa

#HIV-1 #viêm não #đại thực bào #sự sao chép virus #rối loạn chức năng thần kinh

Tài liệu tham khảo

Adamson DC, Wildemann B, et al (1996). Immunologic NO synthase: elevation in severe AIDS dementia and induction by HIV-1 gp41. Science 274: 1917–1921. Brenneman DE, Westbrook GL, et al (1988). Neuronal cell killing by the envelope protein of HIV and its prevention by vasoactive intestinal peptide. Nature 335: 639–642. Cheng-Mayer C, Levy JA (1988). Distinct biological and serological properties of human immunodeficiency viruses from the brain. Ann Neurol 23: S58-S61. Cherner M, Masliah E, et al (2002). Neurocognitive dysfunction predicts postmortem findings of HIV encephalitis. Neurology 59: 1563–1567. Cinque P, Vago L, et al (1998). Cerebrospinal fluid HIV-1 RNA levels: correlation with HIV encephalitis. Aids 12: 389–394. Collman R, Balliet JW, et al (1992). An infectious molecular clone of an unusual macrophage-tropic and highly cytopathic strain on human immunodeficiency virus type 1. J Virol 66: 7517–7521. Everall IP, Heaton RK, et al (1999). Cortical synaptic density is reduced in mild to moderate human immunodeficiency virus neurocognitive disorder. HNRC Group. HIV Neurobehavioral Research Center. Brain Pathol 9: 209–217. Fellay J, Marzolini C, et al (2002). Response to antiretroviral treatment in HIV-1-infected individuals with allelic variants of the multidrug resistance transporter 1: a pharmacogenetics study. Lancet 359: 30–36. Gabuzda D, He J, et al (1998). Chemokine receptors in HIV-1 infection of the central nervous system. Semin Immunol 10: 203–213. Gartner S, Markovits P, et al (1986). The role of mononuclear phagocytes in HTLV-III LAV infection. Science 233: 214–218. Gelbard HA, Nottet HS, et al (1994). Platelet-activating factor: a candidate human immunodeficiency virus type 1-induced neurotoxin. J Virol 68: 4628–4635. Gendelman HE, Orenstein JM, et al (1988). Efficient isolation and propagation of human immunodeficiency virus on recombinant colony-stimulating factor 1-treated monocytes. J Exp Med 167: 1428–1441. Genis P, Jett M, et al (1992). Cytokines and arachidonic metabolites produced during human immunodeficiency virus (HIV)-infected macrophage-astroglia interactions: implications for the neuropathogenesis of HIV disease. J Exp Med 176: 1703–1718. Ghorpade A, Nukuna A, et al (1998a). Human immunodeficiency virus neurotropism: an analysis of viral replication and cytopathicity for divergent strains in monocytes and microglia. J Virol 72: 3340–3350. Ghorpade A, Xia MQ, et al (1998b). Role of the beta-chemokine receptors CCR3 and CCR5 in human immunodeficiency virus type 1 infection of monocytes and microglia. J Virol 72: 3351–3361. Glass JD, Fedor H, et al (1995). Immunocytochemical quantitation of human immunodeficiency virus in the brain: correlations with dementia. Ann Neurol 38: 755–762. Gonzalez E, Rovin BH, et al (2002). HIV-1 infection and AIDS dementia are influenced by a mutant MCP-1 allele linked to increased monocyte infiltration of tissues and MCP-1 levels. Proc Natl Acad Sci U S A 99: 13795–13800. Gorry PR, Taylor J, et al (2002). Increased CCR5 affinity and reduced CCR5/CD4 dependence of a neurovirulent primary human immunodeficiency virus type 1 isolate. J Virol 76: 6277–6292. Heinzinger N, Baca-Regen L, et al (1995). Efficient synthesis of viral nucleic acids following monocyte infection by HIV-1. Virology 206: 731–735. Jellinger KA, Setinek U, et al (2000). Neuropathology and general autopsy findings in AIDS during the last 15 years. Acta Neuropathol (Berl) 100: 213–220. Johnson RT (1995). The pathogenesis of HIV infections of the brain. Curr Top Microbiol Immunol 202: 3–10. Koenig S, Gendelman HE, et al (1986). Detection of AIDS virus in macrophages in brain tissue from AIDS patients with encephalopathy. Science 233: 1089–1093. Koyanagi Y, Miles S, et al (1987). Dual infection of the central nervous system by AIDS viruses with distinct cellular tropisms. Science 236: 819–822. Letendre S, Rought S, et al (2002). Polymorphisms in the MDR-1 gene are associated with differences in indinavir concentrations in CSF. In: Viral and host genetic factors regulating HIV/CNS disease. Washington, DC: p. 49. Maschke M, Kastrup O, et al (2000). Incidence and prevalence of neurological disorders associated with HIV since the introduction of highly active antiretroviral therapy (HAART). J Neurol Neurosurg Psychiatry 69: 376–380. McArthur JC, McClernon DR, et al (1997). Relationship between human immunodeficiency virus-associated dementia and viral load in cerebrospinal fluid and brain. Ann Neurol 42: 689–698. Navia B, Jordan B, et al (1986). The AIDS dementia complex: I. Clinical features. Ann Neurol 19: 517–524. Neuenburg JK, Brodt HR, et al (2002). HIV-related neuropathology, 1985 to 1999: rising prevalence of HIV encephalopathy in the era of highly active antiretroviral therapy. J Acquir Immune Defic Syndr 31: 171–177. New DR, Ma M, et al (1997). Human immunodeficiency virus type 1 Tat protein induces death by apoptosis in primary human neuron cultures. J NeuroVirol 3: 168–173. Nottet HS, Jett M, et al (1995). A regulatory role for astrocytes in HIV-1 encephalitis. An overexpression of eicosanoids, platelet-activating factor, and tumor necrosis factor-alpha by activated HIV-1-infected monocytes is attenuated by primary human astrocytes. J Immunol 154: 3567–3581. Persidsky Y, Buttini M, et al (1997). An analysis of HIV-1-associated inflammatory products in brain tissue of humans and SCID mice with HIV-1 encephalitis. J NeuroVirol 3: 401–416. Persidsky Y, Ghorpade A, et al (1999). Microglial and astrocyte chemokines regulate monocyte migration through the blood-brain barrier in human immunodeficiency virus-1 encephalitis. Am J Pathol 155: 1599–1611. Persidsky Y, Limoges J, et al (1996). Human immunodeficiency virus encephalitis in SCID mice [see comments]. Am J Pathol 149: 1027–1053. Poluektova L, Moran T, et al (2001). The regulation of alpha chemokines during HIV-1 infection and leukocyte activation: relevance for HIV-1-associated dementia. J Neuroimmunol 120: 112–128. Power C, Gill MJ, et al (2002). Progress in clinical neurosciences: The neuropathogenesis of HIV infection: host-virus interaction and the impact of therapy. Can J Neurol Sci 29: 19–32. Price R, Brew B, et al (1988). The brain and AIDS: central nervous system HIV-1 infection and AIDS dementia complex. Science 239: 586–592. Sacktor N, Lyles RH, et al (2001). HIV-associated neurologic disease incidence changes: multicenter AIDS Cohort Study, 1990–1998. Neurology 56: 257–260. Sacktor N, McDermott MP, et al (2002). HIV-associated cognitive impairment before and after the advent of combination therapy. J NeuroVirol 8: 136–142. Tyor WR, Power C, et al (1993). A model of human immunodeficiency virus encephalitis in SCID mice. Proc Natl Acad Sci U S A 90: 8658–8662. Wiley CA, Schrier RD, et al (1986). Cellular localization of human immunodeficiency virus infection within the brains of acquired immune deficiency syndrome patients. Proc Natl Acad Sci U S A 83: 7089–7093. Yoshimura T, Takeya M, et al (1991). Production and characterization of muse monoclonal antibodies against human monocyte chemoattractant protein-1. J Immunology 147: 2229–2233. Zink WE, Anderson E, et al (2002). Impaired spatial cognition and synaptic potentiation in a murine model of human immunodeficiency virus type 1 encephalitis. J Neurosci 22: 2096–2105.