Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Mức độ, phân bố và biến động theo mùa của hydrocacbon thơm đa vòng (PAH) trong không khí xung quanh và các thành phần của cây thông
Tóm tắt
Các thành phần của cây thông (Pinus pinea) đã được sử dụng như các mẫu không khí thụ động để xác định nồng độ hydrocacbon thơm đa vòng (PAH) trong khí quyển. Kết quả của chúng tôi cho thấy rằng lá thông và cành thông đã chứng minh thành công về mặt thống kê trong việc mô tả không khí xung quanh. Các mẫu lá thông, cành (1 và 2 năm tuổi) và không khí xung quanh được thu thập hàng tháng trong 1 năm để xác định sự phân bố phân tử và nồng độ tạm thời của các PAH ở khu vực công nghiệp ngoại ô. Nồng độ Σ14PAH trung bình hàng năm cho lá thông, cành 1 năm tuổi, cành 2 năm tuổi và không khí xung quanh lần lượt là 756 ± 232 ng/g DW, 685 ± 350 ng/g DW, 587 ± 361 ng/g DW và 28.29 ± 32.33 ng/m3. Thứ tự nồng độ trung bình của Σ14PAH ở các thành phần cây thông được xác định là lá > cành 1 năm tuổi > cành 2 năm tuổi. Nói chung, nồng độ tăng lên khi diện tích bề mặt của các thành phần cây tăng. Trong các mẫu, PAH 3 vòng và 4 vòng là các hợp chất chiếm ưu thế trong không khí xung quanh, lá thông và cành. Phân đoạn tổng thể hàng năm của PAH 3 vòng và 4 vòng trong không khí là 98,5%, trong khi phân đoạn của PAH 5 vòng và 6 vòng là 1,5%. Mặt khác, PAH 3 vòng và 4 vòng trong lá và cành thông chiếm từ 30% trở lên. Phân đoạn và mức độ của PAH thay đổi theo mùa. Mặc dù các mẫu lá không cho thấy bất kỳ xu hướng theo mùa nào, nhưng mức PAH ở các thành phần cây khác đã thay đổi theo nhiệt độ không khí. Nói chung, giá trị thấp hơn được ghi nhận trong các mùa ấm hơn trong mẫu cành. Tương tự, nồng độ PAH trong không khí xung quanh cao hơn vào mùa đông do sưởi ấm và các điều kiện khí tượng bất lợi.
Từ khóa
#hydrocacbon thơm đa vòng #cây thông #không khí xung quanh #nồng độ PAH #biến động theo mùaTài liệu tham khảo
Abdel-Shafy, H. I., & Mansour, M. S. M. (2016). A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egyptian Journal of Petroleum. https://doi.org/10.1016/j.ejpe.2015.03.011
Augusto, S., Máguas, C., Matos, J., Pereira, M. J., & Branquinho, C. (2010). Lichens as an integrating tool for monitoring PAH atmospheric deposition: A comparison with soil, air and pine needles. Environmental Pollution. https://doi.org/10.1016/j.envpol.2009.08.016
Barber, J. L., Thomas, G. O., Kerstiens, G., & Jones, K. C. (2002). Air-side and plant-side resistances influence the uptake of airborne PCBs by evergreen plants. Environmental Science and Technology. https://doi.org/10.1021/es010275u
Behymer, T. D., & Hltes, R. A. (1985). Photolysis of polycyclic aromatic hydrocarbons adsorbed on simulated atmospheric particulates. Environmental Science and Technology. https://doi.org/10.1021/es00140a020
Birgul, A., & Tasdemir, Y. (2015). Concentrations, gas-particle partitioning, and seasonal variations of polycyclic aromatic hydrocarbons at four sites in Turkey. Archives of Environmental Contamination and Toxicology. https://doi.org/10.1007/s00244-014-0105-8
Birgül, A., Tasdemir, Y., & Cindoruk, S. S. (2011). Atmospheric wet and dry deposition of polycyclic aromatic hydrocarbons (PAHs) determined using a modified sampler. Atmospheric Research. https://doi.org/10.1016/j.atmosres.2011.03.012
Budzinski, H., Jones, I., Bellocq, J., Piérard, C., & Garrigues, P. (1997). Evaluation of sediment contamination by polycyclic aromatic hydrocarbons in the Gironde estuary. Marine Chemistry. https://doi.org/10.1016/S0304-4203(97)00028-5
Caliskan, B., Kücük, A., Tasdemir, Y., & Cindoruk, S. S. (2020). PAH levels in a furniture-manufacturing city atmosphere. Chemosphere. https://doi.org/10.1016/j.chemosphere.2019.124757
Callén, M. S., López, J. M., Iturmendi, A., & Mastral, A. M. (2013). Nature and sources of particle associated polycyclic aromatic hydrocarbons (PAH) in the atmospheric environment of an urban area. Environmental Pollution. https://doi.org/10.1016/j.envpol.2012.11.009
Chen, F., Zhao, G. H., Liao, X. J., Wang, Z. F., & Hu, X. S. (2006). Study on the supercritical CO2 extraction of the oil and wax from rice bran. Proceedings of the China Association for Science and Technology, 2(1), 198–203. //000238346000031
Chen, K. S., Li, H. C., Wang, H. K., Wang, W. C., & Lai, C. H. (2009). Measurement and receptor modeling of atmospheric polycyclic aromatic hydrocarbons in urban Kaohsiung, Taiwan. Journal of Hazardous Materials. https://doi.org/10.1016/j.jhazmat.2008.11.094
Chrabąszcz, M., & Mróz, L. (2017). Tree bark, a valuable source of information on air quality. Polish Journal of Environmental Studies. https://doi.org/10.15244/pjoes/65908
Chun, M. Y. (2011). Relationship between PAHs concentrations in ambient air and deposited on pine needles. Environmental Health and Toxicology. https://doi.org/10.5620/eht.2011.26.e2011004
Cincinelli, A., Del Bubba, M., Martellini, T., Gambaro, A., & Lepri, L. (2007). Gas-particle concentration and distribution of n-alkanes and polycyclic aromatic hydrocarbons in the atmosphere of Prato (Italy). Chemosphere. https://doi.org/10.1016/j.chemosphere.2006.12.089
Cindoruk, S. S., & Tasdemir, Y. (2007). Characterization of gas/particle concentrations and partitioning of polychlorinated biphenyls (PCBs) measured in an urban site of Turkey. Environmental Pollution. https://doi.org/10.1016/j.envpol.2006.10.018
Cindoruk, S. S., Sakin, A. E., & Tasdemir, Y. (2020). Levels of persistent organic pollutants in pine tree components and ambient air. Environmental Pollution. https://doi.org/10.1016/j.envpol.2019.113418
De Nicola, F., Graña, E. C., Mahía, P. L., Lorenzo, S. M., Rodríguez, D. P., Retuerto, R., et al. (2017). Evergreen or deciduous trees for capturing PAHs from ambient air? Environmental Pollution. https://doi.org/10.1016/j.envpol.2016.11.074
De Nicola, F., Maisto, G., Prati, M. V., & Alfani, A. (2005). Temporal variations in PAH concentrations in Quercus ilex L. (holm oak) leaves in an urban area. Chemosphere. https://doi.org/10.1016/j.chemosphere.2005.01.082
Dvorská, A., Lammel, G., & Klánová, J. (2011). Use of diagnostic ratios for studying source apportionment and reactivity of ambient polycyclic aromatic hydrocarbons over Central Europe. Atmospheric Environment. https://doi.org/10.1016/j.atmosenv.2010.09.063
Esen, F., Cindoruk, S. S., & Taşdemir, Y. (2006). Ambient concentrations and gas/particle partitioning of polycyclic aromatic hydrocarbons in an urban site in Turkey. Environmental Forensics. https://doi.org/10.1080/15275920600996099
Esen, F., Evci, Y. M., & Tasdemir, Y. (2017). Evaluation and application of a passive air sampler for polycylic aromatic hydrocarbons (PAHs). Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering. https://doi.org/10.1080/10934529.2017.1328949
Esen, F., Tasdemir, Y., & Bozkurt, Y. M. (2019). Assessments of seasonal trend, gas–particle partitioning and deposition flux of polycyclic aromatic hydrocarbons at a semi-rural site. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering. https://doi.org/10.1080/10934529.2019.1574158
Evci, Y. M., Esen, F., & Taşdemir, Y. (2016). Monitoring of long-term outdoor concentrations of PAHs with passive air samplers and comparison with meteorological data. Archives of Environmental Contamination and Toxicology. https://doi.org/10.1007/s00244-016-0292-6
Faboya, O. L., Sojinu, S. O., Oguntuase, B. J., & Sonibare, O. O. (2020). Impact of forest fires on polycyclic aromatic hydrocarbon concentrations and stable carbon isotope compositions in burnt soils from tropical forest, Nigeria. Scientific African. https://doi.org/10.1016/j.sciaf.2020.e00331
Falay, E. O., Tuna, G., Altiok, H., Kara, M., Dumanoglu, Y., Bayram, A., et al. (2013). Spatial variation of polycyclic aromatic hydrocarbons (PAHs) in air, soil and tree components in Iskenderun Industrial Region, Turkey. International Journal of Chemical, Environmental & Biological Sciences (IJCEBS), 1, 279–283.
Farooq, S., Eqani, S. A. M. A. S., Malik, R. N., Katsoyiannis, A., Zhang, G., Zhang, Y., et al. (2011). Occurrence, finger printing and ecological risk assessment of polycyclic aromatic hydrocarbons (PAHs) in the Chenab River, Pakistan. Journal of Environmental Monitoring. https://doi.org/10.1039/c1em10421g
Fernández-Varela, R., Ratola, N., Alves, A., & Manuel Amigo, J. (2015). Relationship between levels of polycyclic aromatic hydrocarbons in pine needles and socio-geographic parameters. Journal of Environmental Management. https://doi.org/10.1016/j.jenvman.2015.03.019
Freeman, D. J., & Cattell, F. C. R. (1990). Woodburning as a source of atmospheric polycyclic aromatic hydrocarbons. Environmental Science and Technology. https://doi.org/10.1021/es00080a019
Gregoris, E., Barbaro, E., Morabito, E., Toscano, G., Donateo, A., Cesari, D., et al. (2016). Impact of maritime traffic on polycyclic aromatic hydrocarbons, metals and particulate matter in Venice air. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-015-5811-x
Grung, M., Petersen, K., Fjeld, E., Allan, I., Christensen, J. H., Malmqvist, L. M. V., et al. (2016). PAH related effects on fish in sedimentation ponds for road runoff and potential transfer of PAHs from sediment to biota. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2016.05.191
Guéguen, F., Stille, P., & Millet, M. (2011). Air quality assessment by tree bark biomonitoring in urban, industrial and rural environments of the Rhine Valley: PCDD/Fs, PCBs and trace metal evidence. Chemosphere. https://doi.org/10.1016/j.chemosphere.2011.06.032
Guo, H., Lee, S. C., Ho, K. F., Wang, X. M., & Zou, S. C. (2003). Particle-associated polycyclic aromatic hydrocarbons in urban air of Hong Kong. Atmospheric Environment. https://doi.org/10.1016/j.atmosenv.2003.09.011
Guo, Y., Wu, K., Huo, X., & Xu, X. (2011). Sources, distribution, and toxicity of polycyclic aromatic hydrocarbons. Journal of Environmental Health. https://www.jstor.org/stable/26329217
Hellström, A. (2003). Uptake of airborne organic pollutants in pine needles geographical and seasonal variations, (Doctoral thesis, Swedish University of Agricultural Sciences, Department of Environmental Assessment, Uppsala, Swedish).
Holoubek, I., Klánová, J., Jarkovský, J. J., & Kohoutek, J. J. (2007). Trends in background levels of persistent organic pollutants at Kosetice observatory, Czech Republic. Journal of Environmental Monitoring : JEM. https://doi.org/10.1039/b700750g
Hwang, H. M., & Wade, T. L. (2008). Aerial distribution, temperature-dependent seasonal variation, and sources of polycyclic aromatic hydrocarbons in pine needles from the Houston metropolitan area, Texas, USA. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering. https://doi.org/10.1080/10934520802177771
Karaca, G. (2016). Spatial distribution of polycyclic aromatic hydrocarbon (PAH) concentrations in soils from Bursa, Turkey. Archives of Environmental Contamination and Toxicology. https://doi.org/10.1007/s00244-015-0248-2
Kargar, N., Matin, G., Matin, A. A., & Buyukisik, H. B. (2017). Biomonitoring, status and source risk assessment of polycyclic aromatic hydrocarbons (PAHs) using honeybees, pine tree leaves, and propolis. Chemosphere. https://doi.org/10.1016/j.chemosphere.2017.07.127
Keith, L. H. (2015). The Source of U.S. EPA’s Sixteen PAH Priority Pollutants. Polycyclic Aromatic Compounds. https://doi.org/10.1080/10406638.2014.892886
Kim, K. H., Jahan, S. A., Kabir, E., & Brown, R. J. C. (2013). A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environment International. https://doi.org/10.1016/j.envint.2013.07.019
Kipopoulou, A. M., Manoli, E., & Samara, C. (1999). Bioconcentration of polycyclic aromatic hydrocarbons in vegetables grown in an industrial area. Environmental Pollution. https://doi.org/10.1016/S0269-7491(99)00107-4
Lammel, G., Novák, J., Landlová, L., Dvorská, A., Klánová, J., Čupr, P., et al. (2011). Sources and distributions of polycyclic aromatic hydrocarbons and toxicity of polluted atmosphere aerosols, Environmental Science and Engineering (Subseries: Environmental Science). https://doi.org/10.1007/978-3-642-12278-1_3
Lang, Q., Hunt, F., Wai, C. M. (2000). Supercritical fluid extraction of polycyclic aromatic hydrocarbons from white pine (Pinus strobus) needles and its implications, Journal of Environmental Monitoring. https://doi.org/10.1039/b004613m
Lee, B. K. (2010). Sources, distribution and toxicity of polyaromatic hydrocarbons (PAHs) in particulate matter. Air Pollution. https://doi.org/10.5772/10045
Lehndorff, E., & Schwark, L. (2004). Biomonitoring of air quality in the Cologne Conurbation using pine needles as a passive sampler - Part II: Polycyclic aromatic hydrocarbons (PAH). Atmospheric Environment. https://doi.org/10.1016/j.atmosenv.2004.03.065
Librando, V., Perrini, G., & Tomasello, M. (2002). Biomonitoring of atmospheric PAHs by evergreen plants: Correlations and applicability. Polycyclic Aromatic Compounds. https://doi.org/10.1080/10406630290103726
Lim, M. C. H., Ayoko, G. A., & Morawska, L. (2005). Characterization of elemental and polycyclic aromatic hydrocarbon compositions of urban air in Brisbane. Atmospheric Environment. https://doi.org/10.1016/j.atmosenv.2004.09.050
Liu, X., Chen, Z., Xia, C., Wu, J., & Ding, Y. (2020). Characteristics, distribution, source and ecological risk of polycyclic aromatic hydrocarbons (PAHs) in sediments along the Yangtze River Estuary Deepwater Channel. Marine Pollution Bulletin. https://doi.org/10.1016/j.marpolbul.2019.110765
Loganathan, B. G., Kumar, K. S., Masunaga, S., & Kenneth, S. S. (2008). Polychlorinated dibenzo-p-dioxins, dibenzofurans, and dioxin-like polychlorinated biphenyls in sediment and mussel samples from Kentucky Lake, USA. Archives of Environmental Contamination and Toxicology. https://doi.org/10.1007/s00244-007-9006-4
Ma, W. L., Li, Y. F., Qi, H., Sun, D. Z., Liu, L. Y., & Wang, D. G. (2010). Seasonal variations of sources of polycyclic aromatic hydrocarbons (PAHs) to a northeastern urban city, China. Chemosphere. https://doi.org/10.1016/j.chemosphere.2010.01.048
Mahmood, S., Taher, M., & Mandal, U. K. (2014). Experimental design and optimization of raloxifene hydrochloride loaded nanotransfersomes for transdermal application. International Journal of Nanomedicine. https://doi.org/10.2147/IJN.S65408
Marsili, M., Stracquadanio, M., Trombini, C., & Vassura, I. (2001). The epicuticular wax of Laurus nobilis leaves as a passive sampler of polycyclic aromatic hydrocarbons in ambient air. Fresenius Environmental Bulletin. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0034998269&partnerID=40&md5=5c16f0da4bcc2eee4a6a4ef7409b05f8
McLachlan, M. S. (1999). Framework for the interpretation of measurements of SOCs in plants. Environmental Science and Technology. https://doi.org/10.1021/es980831t
Meharg, A. A., Wright, J., Dyke, H., & Osborn, D. (1998). Polycyclic aromatic hydrocarbon (PAH) dispersion and deposition to vegetation and soil following a large scale chemical fire. Environmental Pollution. https://doi.org/10.1016/S0269-7491(97)00180-2
Menichini, E. (1992). Urban air pollution by polycyclic aromatic hydrocarbons: Levels and sources of variability. Science of the Total Environment. https://doi.org/10.1016/0048-9697(92)90368-3
Mętrak, M., Aneta, E., Wiłkomirski, B., Staszewski, T., & Suska-Malawska, M. (2016). Interspecific differences in foliar 1 PAHs load between Scots pine, birch, and wild rosemary from three polish peat bogs. Environmental Monitoring and Assessment. https://doi.org/10.1007/s10661-016-5465-2
Mishra, N., Ayoko, G. A., & Morawska, L. (2016). Atmospheric polycyclic aromatic hydrocarbons in the urban environment: Occurrence, toxicity and source apportionment. Environmental Pollution. https://doi.org/10.1016/j.envpol.2015.08.015
Nagy, A. S., & Szabó, J. (2018). Particle-associated PAHs in urban and rural ambient air samples, Proceedings of the 3rd World Congress on Civil, Structural, and Environmental Engineering (CSEE’18). https://doi.org/10.11159/awspt18.101
Navarro-Ortega, A., Ratola, N., Hildebrandt, A., Alves, A., Lacorte, S., & Barceló, D. (2012). Environmental distribution of PAHs in pine needles, soils, and sediments. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-011-0610-5
Ockenden, W. A., Steinnes, E., Parker, C., & Jones, K. C. (1998). Observations on persistent organic pollutants in plants: Implications for their use as passive air samplers and for POP cycling. Environmental Science and Technology. https://doi.org/10.1021/es980150y
Odabasi, M., Dumanoglu, Y., Falay, EO., Tuna, G., Altiok, H., Kara, M., Bayram, A., et al. (2016). Investigation of spatial distributions and sources of persistent organic pollutants (POPs) in a heavily polluted industrial region using tree components. Chemosphere. https://doi.org/10.1016/j.chemosphere.2016.06.076
Odabasi, M., Falay, EO., Tuna, G., Altiok, H., Kara, M., Dumanoglu, Y., Bayram, A., et al. (2015). Biomonitoring the spatial and historical variations of persistent organic pollutants (POPs) in an industrial region. Environmental Science and Technology. https://doi.org/10.1021/es506316t
Oishi, Y. (2018). Comparison of moss and pine needles as bioindicators of transboundary polycyclic aromatic hydrocarbon pollution in central Japan. Environmental Pollution. https://doi.org/10.1016/j.envpol.2017.11.035
Oishi, Y. (2013). Comparison of pine needles and mosses as bio-indicators for polycyclic aromatic hydrocarbons. Journal of Environmental Protection. https://doi.org/10.4236/jep.2013.48a1013
Pallardy, S. G. (2008). Physiology of Woody Plants. Third edition. Academic Press publications, Elsevier Inc., Burlington, MA, USA. pp. 218–220.
Park, J. S., Wade, T. L., & Sweet, S. (2001). Atmospheric distribution of polycyclic aromatic hydrocarbons and deposition to Galveston Bay, Texas, USA. Atmospheric Environment. https://doi.org/10.1016/S1352-2310(01)00080-2
Piccardo, M. T., Pala, M., Bonaccurso, B., Stella, A., Redaelli, A., Paola, G., et al. (2005). Pinus nigra and Pinus pinaster needles as passive samplers of polycyclic aromatic hydrocarbons. Environmental Pollution. https://doi.org/10.1016/j.envpol.2004.05.034
Ratola, N., Alves, A., Lacorte, S., & Barceló, D. (2012). Distribution and sources of PAHs using three pine species along the Ebro River. Environmental Monitoring and Assessment. https://doi.org/10.1007/s10661-011-2014-x
Ratola, N., Amigo, J. M., & Alves, A. (2010a). Levels and sources of PAHs in selected sites from portugal: Biomonitoring with Pinus pinea and Pinus pinaster needles. Archives of Environmental Contamination and Toxicology. https://doi.org/10.1007/s00244-009-9462-0
Ratola, N., Amigo, J. M., & Alves, A. (2010b). Comprehensive assessment of pine needles as bioindicators of PAHs using multivariate analysis. The importance of temporal trends. Chemosphere. https://doi.org/10.1016/j.chemosphere.2010.08.031
Ratola, N., Amigo, J. M., Oliveira, M. S. N., Araújo, R., Silva, J. A., & Alves, A. (2011a). Differences between Pinus pinea and Pinus pinaster as bioindicators of polycyclic aromatic hydrocarbons. Environmental and Experimental Botany. https://doi.org/10.1016/j.envexpbot.2011.04.012
Ratola, N., Alves, A., & Psillakis, E. (2011b). Biomonitoring of polycyclic aromatic hydrocarbons contamination in the Island of Crete using pine needles. Water Air Soil Pollution. https://doi.org/10.1007/s11270-010-0469-y
Ratola, N., Lacorte, S., Alves, A., & Barceló, D. (2006). Analysis of polycyclic aromatic hydrocarbons in pine needles by gas chromatography-mass spectrometry. Comparison of different extraction and clean-up procedures. Journal of Chromatography A. https://doi.org/10.1016/j.chroma.2006.03.110
Ratola, N., Lacorte, S., Barceló, D., & Alves, A. (2009). Microwave-assisted extraction and ultrasonic extraction to determine polycyclic aromatic hydrocarbons in needles and bark of Pinus pinaster Ait. and Pinus pinea L. by GC-MS. Talanta. https://doi.org/10.1016/j.talanta.2008.08.010
Salamova, A., & Hites, R. A. (2010). Evaluation of tree bark as a passive atmospheric sampler for flame retardants, PCBs, and organochlorine pesticides. Environmental Science and Technology. https://doi.org/10.1021/es101599h
Sari, M. F., Esen, F., & Tasdemir, Y. (2020). Biomonitoring and source identification of polycyclic aromatic hydrocarbons (PAHs) using pine tree components from three different sites in Bursa, Turkey. Archives of Environmental Contamination and Toxicology. https://doi.org/10.1007/s00244-020-00722-1
Shahsavani, S., Hoseini, M., Dehghani, M., & Fararouei, M. (2017). Characterisation and potential source identification of polycyclic aromatic hydrocarbons in atmospheric particles (PM10) from urban and suburban residential areas in Shiraz, Iran. Chemosphere. https://doi.org/10.1016/j.chemosphere.2017.05.101
Shivani, S., Gadi, R., Sharma, S. K., & Mandal, T. K. (2019). Seasonal variation, source apportionment and source attributed health risk of fine carbonaceous aerosols over National Capital Region, India. Chemosphere. https://doi.org/10.1016/j.chemosphere.2019.124500
Slezakova, K., Pires, J. C. M., Castro, D., Alvim-Ferraz, M. C. M., Delerue-Matos, C., Morais, S., et al. (2013). PAH air pollution at a Portuguese urban area: Carcinogenic risks and sources identification. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-012-1300-7
Srogi, K. (2007). Monitoring of environmental exposure to polycyclic aromatic hydrocarbons: A review. Environmental Chemistry Letters. https://doi.org/10.1007/s10311-007-0095-0
Stogiannidis, E., & Laane, R. (2015). Source characterization of polycyclic aromatic hydrocarbons by using their molecular indices: An overview of possibilities. Reviews of Environmental Contamination and Toxicology. https://doi.org/10.1007/978-3-319-10638-0_2
Tasdemir, Y., & Esen, F. (2007). Urban air PAHs: Concentrations, temporal changes and gas/particle partitioning at a traffic site in Turkey. Atmospheric Research. https://doi.org/10.1016/j.atmosres.2006.04.003
Terzaghi, E., Wild, E., Zacchello, G., Cerabolini, B. E. L., Jones, K. C., & Di Guardo, A. (2013). Forest Filter Effect: Role of leaves in capturing/releasing air particulate matter and its associated PAHs. Atmospheric Environment. https://doi.org/10.1016/j.atmosenv.2013.04.013
Tian, X., Liu, J., Zhou, G., Peng, P., Wang, X., & Wang, C. (2008). Estimation of the annual scavenged amount of polycyclic aromatic hydrocarbons by forests in the Pearl River Delta of Southern China. Environmental Pollution. https://doi.org/10.1016/j.envpol.2008.02.012
Tomashuk, T. A., Truong, T. M., Mantha, M., & McGowin, A. E. (2012). Atmospheric polycyclic aromatic hydrocarbon profiles and sources in pine needles and particulate matter in Dayton, Ohio, USA. Atmospheric Environment. https://doi.org/10.1016/j.atmosenv.2012.01.028
van Drooge, B. L., Garriga, G., & Grimalt, J. O. (2014). Polycyclic aromatic hydrocarbons in pine needles (Pinus halepensis) along a spatial gradient between a traffic intensive urban area (Barcelona) and a nearby natural park. Atmospheric Pollution Research. https://doi.org/10.5094/APR.2014.046
Vardar, N., Esen, F., & Tasdemir, Y. (2008). Seasonal concentrations and partitioning of PAHs in a suburban site of Bursa, Turkey. Environmental Pollution. https://doi.org/10.1016/j.envpol.2007.11.026
Verim, İ. (2019). Biomonitoring and sources identification of polychlorinated biphenyls (PCBs) using olive tree and pine tree component from three different sites in Bursa, (MSc thesis, Bursa Uludag University, Department of Environmental Engineering, Bursa,Turkey).
Verbruggen, E. M. J., van Herwijnen, R. (2011). Environmental risk limits for phenanthrene., National Institute for Public Helath and the Environment, Ministry of Health, Welfare and Sports, RIVM Letter Report 601357007/2011.
Wada, M., Kido, H., Kishikawa, N., Tou, T., Tanaka, M., Tsubokura, J., et al. (2001). Assessment of air pollution in Nagasaki city: Determination of polycyclic aromatic hydrocarbons and their nitrated derivatives, and some metals. Environmental Pollution. https://doi.org/10.1016/S0269-7491(01)00093-8
Wang, D., Chen, J., Xu, Z., Qiao, X., & Huang, L. (2005). Disappearance of polycyclic aromatic hydrocarbons sorbed on surfaces of pine [Pinua thunbergii] needles under irradiation of sunlight: Volatilization and photolysis. Atmospheric Environment. https://doi.org/10.1016/j.atmosenv.2005.04.008
Wang, D., Tian, F., Yang, M., Liu, C., & Li, Y. F. (2009). Application of positive matrix factorization to identify potential sources of PAHs in soil of Dalian, China. Environmental Pollution. https://doi.org/10.1016/j.envpol.2009.01.003
Wild, E., Dent, J., Thomas, G. O., & Jones, K. C. (2006). Visualizing the air-to-leaf transfer and within-leaf movement and distribution of phenanthrene: Further studies utilizing two-photon excitation microscopy. Environmental Science and Technology. https://doi.org/10.1021/es0515046
Wyrzykowska, B., Bochentin, I., Hanari, N., Orlikowska, A., Falandysz, J., Yuichi, H., et al. (2006). Source determination of highly chlorinated biphenyl isomers in pine needles - Comparison to several PCB preparations. Environmental Pollution. https://doi.org/10.1016/j.envpol.2005.11.018
Wyrzykowska, B., Hanari, N., Orlikowska, A., Bochentin, I., Rostkowski, P., Falandysz, J., et al. (2007). Polychlorinated biphenyls and -naphthalenes in pine needles and soil from Poland - Concentrations and patterns in view of long-term environmental monitoring. Chemosphere. https://doi.org/10.1016/j.chemosphere.2006.05.078
Yang, P., Chen, J., Wang, Z., Qiao, X., Cai, X., Tian, F., et al. (2007). Contributions of deposited particles to pine needle polycyclic aromatic hydrocarbons. Journal of Environmental Monitoring. https://doi.org/10.1039/b708508g
Yang, J., Xu, W., & Cheng, H. (2018). Seasonal variations and sources of airborne polycyclic aromatic hydrocarbons (PAHs) in Chengdu, China. Atmosphere. https://doi.org/10.3390/atmos9020063
Zhang, Y., Chen, J., Yang, H., Li, R., Yu, Q. (2017). Seasonal variation and potential source regions of PM2.5-bound PAHs in the megacity Beijing, China: Impact of regional transport. Environmental Pollution. https://doi.org/10.1016/j.envpol.2017.08.025
Zhao, Y., Yang, L., & Wang, Q. (2008). Modeling persistent organic pollutant (POP) partitioning between tree bark and air and its application to spatial monitoring of atmospheric POPs in Mainland China. Environmental Science and Technology. https://doi.org/10.1021/es800188q
Zhu, L., & Hites, R. A. (2006). Brominated flame retardants in tree bark from North America. Environmental Science and Technology. https://doi.org/10.1021/es060225v