Leveling up the analysis of the reminiscence bump in autobiographical memory: A new approach based on multilevel multinomial models

Memory and Cognition - Tập 46 - Trang 1178-1193 - 2018
Daniel Zimprich1, Tabea Wolf1
1Department of Developmental Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany

Tóm tắt

In many studies of autobiographical memory, participants are asked to generate more than one autobiographical memory. The resulting data then have a hierarchical or multilevel structure, in the sense that the autobiographical memories (Level 1) generated by the same person (Level 2) tend to be more similar. Transferred to an analysis of the reminiscence bump in autobiographical memory, at Level 1 the prediction of whether an autobiographical memory will fall within the reminiscence bump is based on the characteristics of that memory. At Level 2, the prediction of whether an individual will report more autobiographical memories that fall in the reminiscence bump is based on the characteristics of the individual. We suggest a multilevel multinomial model that allows for analyzing whether an autobiographical memory falls in the reminiscence bump at both levels of analysis simultaneously. The data come from 100 older participants who reported up to 33 autobiographical memories. Our results showed that about 12% of the total variance was between persons (Level 2). Moreover, at Level 1, memories of first-time experiences were more likely to fall in the reminiscence bump than were emotionally more positive memories. At Level 2, persons who reported more emotionally positive memories tended to report fewer memories from the life period after the reminiscence bump. In addition, cross-level interactions showed that the effects at Level 1 partly depended on the Level 2 effects. We discuss possible extensions of the model we present and the meaning of our findings for two prominent explanatory approaches to the reminiscence bump, as well as future directions.

Tài liệu tham khảo

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, AC-19, 716–723. https://doi.org/10.1109/TAC.1974.1100705 Alea, N., Ali, S., & Marcano, B. (2014). The bumps in Trinidadian life: Reminiscence bumps for positive and negative life events. Applied Cognitive Psychology, 28, 174–184. Berntsen, D., & Rubin, D. C. (2002). Emotionally charged autobiographical memories across the life span: The recall of happy, sad, traumatic and involuntary memories. Psychology and Aging, 17, 636–652. https://doi.org/10.1037/0882-7974.17.4.636 Berntsen, D., & Rubin, D. C. (2004). Cultural life scripts structure recall from autobiographical memory. Memory & Cognition, 32, 427–442. https://doi.org/10.3758/BF03195836 Bjork, R. A. (1975). Retrieval as a memory modifier: An interpretation of negative recency and related phenomena. In R. L. Solso (Ed.), Information processing and cognition: The Loyola Symposium (pp. 123–144). Hillsdale, NJ: Erlbaum. Bohn, A. (2010). Generational differences in cultural life scripts and life story memories of younger and older adults. Applied Cognitive Psychology, 24, 1324–1345. Bryk, A. S., & Raudenbush, S. W. (1992). Hierarchical linear models. Newbury Park, CA: Sage. Christensen, R. (1997). Log-linear models and logistic regression (2nd ed.). New York, NY: Springer. Conway, M. A., & Haque, S. (1999). Overshadowing the reminiscence bump: Memories of a struggle for independence. Journal of Adult Development, 6, 35–44. Conway, M. A., & Pleydell-Pearce, C. W. (2000). The construction of autobiographical memories in the self-memory system. Psychological Review, 107, 261–288. https://doi.org/10.1037/0033-295X.107.2.261 Conway, M. A., & Rubin, D. C. (1993). The structure of autobiographical memory. In A. E. Collins, S. E. Gathercole, M. A. Conway, & P. E. M. Morris (Eds.), Theories of memory (pp. 103–137). Hove, UK: Erlbaum. Conway, M. A., Wang, Q., Hanyu, K., & Haque, S. (2005). A cross-cultural investigation of autobiographical memory: On the universality and cultural variation of the reminiscence bump. Journal of Cross-Cultural Psychology, 36, 739–749. Demiray, B., Gülgöz, S., & Bluck, S. (2009). Examining the life story account of the reminiscence bump: Why we remember more from young adulthood. Memory, 17, 708–723. Dempster, A. P., Rubin, D. B., & Tsutakawa, R. K. (1981). Estimation in covariance components models. Journal of the American Statistical Association, 76, 341–353. Diggle, P. J., Heagerty, P., Liang, K.-Y., & Zeger, S. L. (2002). Analysis of longitudinal data. Oxford, UK: Oxford University Press. Eysenck, M. W., & Eysenck, M. C. (1980). Effects of processing depth, distinctiveness, and word frequency on retention. British Journal of Psychology, 71, 263–274. Fitzgerald, J. M. (1988). Vivid memories and the reminiscence phenomenon: The role of a self narrative. Human Development, 31, 261–273. Gibbons, R. D., & Hedeker, D. (1997). Random-effects probit and logistic regression models for three-level data. Biometrics, 53, 1527–1537. Glück, J., & Bluck, S. (2007). Looking back across the life span: A life story account of the reminiscence bump. Memory & Cognition, 35, 1928–1939. Goldstein, H. (1995). Multilevel statistical models (2nd ed.). London, UK: Arnold. Hartzel, J., Agresti, A., & Caffo, B. (2001). Multinomial logit random effects models. Statistical Modelling, 1, 81–102. Hedeker, D. (2003). A mixed-effects multinomial logistic regression model. Statistics in Medicine, 21, 1433–1446. Hedeker, D., du Toit, S. H. C., Demirtas, H., & Gibbons, R. D. (2018). A note on marginalization of regression parameters from mixed models of binary outcomes. Biometrics, 74, 354–361. https://doi.org/10.1111/biom.12707 Hedeker, D., & Gibbons, R. D. (2006). Longitudinal data analysis. New York, NY: Wiley. Hox, J. J., & Maas, C. J. M. (2001). The accuracy of multilevel structural equation modeling with pseudobalanced groups and small samples. Structural Equation Modeling, 8, 157–174. Jansari, A., & Parkin, A. J. (1996). Things that go bump in your life: Explaining the reminiscence bump in autobiographical memory. Psychology and Aging, 11, 85–91. Janssen, S. M. J., Chessa, A. G., & Murre, J. M. J. (2005). The reminiscence bump in autobiographical memory: Effects of age, gender, education, and culture. Memory, 13, 658–668. Janssen, S. M. J., Gralak, A., & Murre, J. M. J. (2011). A model for removing the increased recall of recent events from the temporal distribution of autobiographical memory. Behavior Research Methods, 43, 916–930. https://doi.org/10.3758/s13428-011-0110-z Janssen, S. M. J., & Murre, J. M. J. (2008). Reminiscence bump in autobiographical memory: Unexplained by novelty, emotionality, valence, or importance of personal events. Quarterly Journal of Experimental Psychology, 61, 1847–1860. Janssen, S. M. J., Rubin, D. C., & St. Jacques, J. L. (2011). The temporal distribution of autobiographical memory: Changes in reliving and vividness over the life span do not explain the reminiscence bump. Memory & Cognition, 39, 1–11. Koppel, J., & Berntsen, D. (2015). The peaks of life: The differential temporal locations of the reminiscence bump across disparate cueing methods. Journal of Applied Research in Memory and Cognition, 4, 66–80. Laird, N. M., & Ware, J. H. (1982). Random-effects models for longitudinal data. Biometrics, 38, 963–974. Li, X., & Hedeker, D. (2012). A three-level mixed-effects location scale model with an application to Ecological Momentary Assessment (EMA) data. Statistics in Medicine, 31, 3192–3210. Lindsey, J. K. (1997). Applying generalized linear models. New York, NY: Springer. Long, J. S. (1997). Regression models for categorical and limited dependent variables. Thousand Oaks, CA: Sage. Maki, Y., Janssen, S. M. J., Uemiya, A., & Naka, M. (2013). The phenomenology and temporal distributions of autobiographical memories elicited with emotional and neutral cue words. Memory, 21, 286–300. McCullagh, P. (1980). Regression models of ordinal data (with discussion). Journal of the Royal Statistical Society, Series B, 42, 109–142. McCulloch, C. (1997). Maximum likelihood algorithms for generalized linear mixed models. Journal of the American Statistical Association, 92, 162–170. McCulloch, C. E., & Searle, S. R. (2001). Generalized, linear, and mixed models. New York, NY: Wiley. Nakagawa, S., & Schielzeth, H. (2013). A general and simple method for obtaining R 2 from generalized linear mixed effects models. Methods in Ecology and Evolution, 4, 133–142. Pillemer, D. B. (2001). Momentous events and the life story. Review of General Psychology, 5, 123–134. Preacher, K. J., Curran, P. J., & Bauer, D. J. (2006). Computational tools for probing interaction effects in multiple linear regression, multilevel modeling, and latent curve analysis. Journal of Educational and Behavioral Statistics, 31, 437–448. Raman, R., & Hedeker, D. (2005). Mixed-effects regression models for three-level ordinal response data. Statistics in Medicine, 24, 3331–3345. Raudenbush, S. W., Yang, M. L., & Yosef, M. (2000). Maximum likelihood for generalized linear models with nested random effects via high-order, multivariate Laplace approximation. Journal of Computational and Graphical Statistics, 9, 141–157. Robinson, J. A. (1992). First experience memories: Contexts and function in personal histories. In M. A. Conway, D. C. Rubin, H. Spinnler, & W. A. Wager (Eds.), Theoretical perspectives on autobiographical memory (pp. 223–239). Dordrecht, The Netherlands: Kluwer. Rubin, D. C., & Berntsen, D. (2003). Life scripts help to maintain autobiographical memories of highly positive, but not highly negative, events. Memory & Cognition, 31, 1–14. https://doi.org/10.3758/BF03196077 Rubin, D. C., Rahhal, T. A., & Poon, L. W. (1998). Things learned in early adulthood are remembered best. Memory & Cognition, 26, 3–19. Rubin, D. C., & Schulkind, M. D. (1997). The distribution of autobiographical memories across the lifespan. Memory & Cognition, 25, 859–866. Rubin, D. C., Schulkind, M. D., & Rahhal, T. A. (1999). A study of gender differences in autobiographical memory: Broken down by age and sex. Journal of Adult Development, 6, 61–71. Rubin, D. C., Wetzler, S. E., & Nebes, R. D. (1986). Autobiographical memory across the adult lifespan. In D. C. Rubin (Ed.), Autobiographical memory (pp. 202–221). Cambridge, UK: Cambridge University Press. SAS Institute Inc. (2014). SAS/STAT® 13.2 user’s guide. Cary, NC: SAS Institute Inc. Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461–464. https://doi.org/10.1214/aos/1176344136 Stroup, W. W. (2013). Generalized linear mixed models: Modern concepts, methods and applications. Boca Raton, FL: CRC Press. Võ, M. L.-H., Conrad, M., Kuchinke, L., Urton, K., Hofmann, M. J., & Jacobs, A. M. (2009). The Berlin Affective Word List Reloaded (BAWL-R). Behavior Research Methods, 41, 534–538. https://doi.org/10.3758/BRM.41.2.534 Vrieze, S. I. (2012). Model selection and psychological theory: A discussion of the differences between the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC). Psychological Methods, 17, 228–243. https://doi.org/10.1037/a0027127 Wang, L., & Maxwell, S. E. (2015). On disaggregating between-person and within-person effects with longitudinal data using multilevel models. Psychological Methods, 20, 63–83. Wolf, T. (2014). Nostalgie und die Funktionen des autobiographischen Gedächtnisses. Zeitschrift für Gerontologie und Geriatrie, 47, 557–562. Wolf, T., & Zimprich, D. (2014). Funktionen des autobiographischen Gedächtnisses bei jungen und älteren Erwachsenen. Zeitschrift für Entwicklungspsychologie und Pädagogische Psychologie, 46, 201–210. Wolf, T., & Zimprich, D. (2015). Differences in the use of autobiographical memory across the adult lifespan. Memory, 23, 1238–1254. Wolf, T., & Zimprich, D. (2016a). The distribution and the functions of autobiographical memories: Why do older adults remember autobiographical memories from their youth? European Journal of Ageing, 13, 241–250. Wolf, T., & Zimprich, D. (2016b). How can individual differences in autobiographical memory distributions of older adults be explained? Memory, 24, 1287–1299. Zaragoza Scherman, A., Salgado, S., Shao, Z., & Berntsen, D. (2015). Life span distribution and content of positive and negative autobiographical memories across cultures. Psychology of Consciousness: Theory, Research, and Practice, 2, 475–489. Zhao, Y., Staudenmayer, J., Coull, B. A., & Wand, M. P. (2006). General design Bayesian generalized linear mixed models. Statistical Science, 21, 35–51. Zimprich, D. (2010). Modeling change in skewed variables using mixed beta regression models. Research in Human Development, 7, 9–26. Zimprich, D., & Wolf, T. (2016a). The distribution of memories for popular songs in old age: An individual differences approach. Psychology of Music, 44, 640–657. Zimprich, D., & Wolf, T. (2016b). Modeling individual differences in autobiographical memory distributions using mixed logitnormal regression. Applied Cognitive Psychology, 30, 360–374.