Let microorganisms do the talking, let us talk more about microorganisms

Springer Science and Business Media LLC - Tập 3 - Trang 1-7 - 2016
Corrado Nai1,2, Boris Magrini3, Julia Offe4
1Department Applied and Molecular Microbiology, Institute of Biotechnology, Technical University of Berlin, Berlin, Germany
2Federation of the European Microbiological Societies (FEMS), Delft, The Netherlands
3Zurich, Switzerland
4Hamburg, Germany

Tóm tắt

Microorganisms are of uttermost importance, yet in the eyes of the general public they are often associated with dirt and diseases. At the same time, microbiologists have access to and comprehensive knowledge of just a tiny minority of the microbial diversity existing in nature. In this commentary, we present these issues of public misconception and scientific limitations and their possible consequences, and propose ways to overcome them. A particular interest is directed toward the secondary metabolism of filamentous fungi as well as novel outreach activities, including so-called “science slams” and interactions between the arts and the sciences, to raise awareness about the relevance of microorganisms.

Tài liệu tham khảo

Weaver SC, Costa F, Garcia-Blanco MA, Ko AI, Ribeiro GS, Saade G, et al. Zika virus: history, emergence, biology, and prospects for control. Antiviral Res. 2016;130:69–80. Spengler JR, Ervin ED, Towner JS, Rollin PE, Nichol ST. Perspectives on West Africa Ebola virus disease outbreak, 2013–2016. Emerg Infect Dis. 2016;22:2013–6. Callaway E. Devastating wheat fungus appears in Asia for first time. Nature. 2016;532:421–2. Fleming A. On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae. Bull World Health Organ. 1929;2001(79):780–90. Salk JE, Krech U, Yougner JS, Bennett BL, Lewis LJ, Bazeley PL. Formaldehyde treatment and safety testing of experimental poliomyelitis vaccines. Am J Public Health. 1954;44:563–70. Plotkin SA, Plotkin SL. The development of vaccines: how the past led to the future. Nat Rev Microbiol. 2011;9:889–93. Wood JM, Robertson JS. From lethal virus to life-saving vaccine: developing inactivated vaccines for pandemic influenza. Nat Rev Microbiol. 2004;2:842–7. Demain AL, Sanchez S. Microbial drug discovery: 80 years of progress. J Antibiot. 2009;62:5–16. Meyer V, Wu B, Ram AFJ. Aspergillus as a multi-purpose cell factory: current status and perspectives. Biotechnol Lett. 2011;33:469–76. Richter L, Wanka F, Boecker S, Storm D, Kurt T, Vural Ö, et al. Engineering of Aspergillus niger for the production of secondary metabolites. Fungal Biol Biotechnol. 2014;1:4. Pel HJ, de Winde JH, Archer DB, Dyer PS, Hofmann G, Schaap PJ, et al. Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nat Biotechnol. 2007;25:221–31. Singleton P. Bacteria in biology, biotechnology and medicine. 6th ed. Chichester: Wiley; 2004. Sambrook J, Russell DW. Molecular cloning—Sambrook & Russel—vols. 1, 2, 3. Cold Spring Harbor, New York: CSH Press; 2001. Prenafeta-Boldú FX, Guivernau M, Gallastegui G, Viñas M, de Hoog GS, Elías A. Fungal/bacterial interactions during the biodegradation of TEX hydrocarbons (toluene, ethylbenzene and p-xylene) in gas biofilters operated under xerophilic conditions. FEMS Microbiol Ecol. 2012;80:722–34. Shosuke Y, Kasumi H, Toshihiko T, Ikuo T, Hironao Y, Yasuhito M, et al. A bacterium that degrades and assimilatespoly(ethyleneterephthalate). Science. 2016;351:1196–9. Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H, et al. Life with 6000 genes. Science. 1995;274:563–7. Davis RH, Perkins DD. Timeline: Neurospora: a model of model microbes. Nat Rev Genet. 2002;3:397–403. Horvath P, Barrangou R. CRISPR/Cas, the immune system of bacteria and archaea. Science. 2010;327:167–70. Liang P, Xu Y, Zhang X, Ding C, Huang R, Zhang Z, et al. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell. 2015;6:363–72. Callaway E. Embryo editing gets green light. Nature. 2016;530:18–9. Ledford H. CRISPR, the disruptor. Nature. 2015;522:20–4. Sander JD, Joung JK. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol. 2014;32:347–55. Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ, Cheng J-F, et al. Insights into the phylogeny and coding potential of microbial dark matter. Nature. 2013;499:431–7. Lok C. Mining the microbial dark matter. Nature. 2015;522:270–3. Epstein SS. The phenomenon of microbial uncultivability. Curr Opin Microbiol. 2013;16:636–42. Stewart EJ. Growing unculturable bacteria. J Bacteriol. 2012;194:4151–60. de Kruif Paul. Microbe hunters. New York: Harcourt, Brace and Co.; 1926. Bakken LR. Separation and purification of bacteria from soil. Appl Environ Microbiol. 1985;49:1482–7. Stewart A, Brownbridge M, Hill RA, Jackson TA. Utilising soil microbes for biocontrol. In: Dixon GR, Tilston EL, editors. Soil microbiology and sustainable crop production. Heidelberg, Germany: Springer Science+Business Media; 2010; p. 315–71. Althani AA, Marei HE, Hamdi WS, Nasrallah GK, El Zowalaty ME, Al Khodor S, et al. Human microbiome and its association with health and diseases. J Cell Physiol. 2016;231:1688–94. Luckey TD. Introduction to intestinal microecology. Am J Clin Nutr. 1972;25:1292–4. Abbott A. Scientists bust myth that our bodies have more bacteria than human cells. Nat. News. 2016. doi:10.1038/nature.2016.19136. Festi D, Schiumerini R, Eusebi LH, Marasco G, Taddia M, Colecchia A. Gut microbiota and metabolic syndrome. World J Gastroenterol. 2014;20:16079–94. Mueller UG, Sachs JL. Engineering microbiomes to improve plant and animal health. Trends Microbiol. 2015;23:606–17. Kyrpides NC, Eloe-Fadrosh EA, Ivanova NN. Microbiome data science: understanding our microbial planet. Trends Microbiol. 2016;24:425–7. Byrd BAL, Segre JA. Infectious disease. Adapting Koch’s postulates. Science. 2016;351:224–6. Laukens D, Brinkman BM, Raes J, De Vos M, Vandenabeele P. Heterogeneity of the gut microbiome in mice: guidelines for optimizing experimental design. FEMS Microbiol Rev. 2015;40:117–32. Nichols D, Cahoon N, Trakhtenberg EM, Pham L, Mehta A, Belanger A, et al. Use of ichip for high-throughput in situ cultivation of “uncultivable” microbial species. Appl Environ Microbiol. 2010;76:2445–50. Ling LL, Schneider T, Peoples AJ, Spoering AL, Engels I, Conlon BP, et al. A new antibiotic kills pathogens without detectable resistance. Nature. 2015;517:455–9. Nguyen TLA, Vieira-Silva S, Liston A, Raes J. How informative is the mouse for human gut microbiota research? Dis Model Mech. 2015;8:1–16. Seiffert F, Bandow N, Kalbe U, Milke R, Gorbushina AA. Laboratory tools to quantify biogenic dissolution of rocks and minerals: a model rock biofilm growing in percolation columns. Front Earth Sci. 2016;4:1–10. Goers L, Freemont P, Polizzi KM. Co-culture systems and technologies: taking synthetic biology to the next level. J R Soc Interface. 2014;11:20140065. Yang Y-L, Xu Y, Straight PD, Dorrestein PC. Translating metabolic exchange with imaging mass spectrometry. Nat Chem Biol. 2009;5:885–7. Waters CM, Bassler BL. Quorum sensing: cell-to-cell communication in bacteria. Annu Dev Biol. 2005;21:319–46. Mika F, Hengge R. Small regulatory RNAs in the control of motility and biofilm formation in E. coli and Salmonella. Int J Mol Sci 2013;14:4560–79. Hengge R. Principles of c-di-GMP signalling in bacteria. Nat Rev Microbiol. 2009;7:263–73. Grube M, Cardinale M, Berg G. Bacteria and the lichen symbiosis. Fungal Assoc. 2012;77:363–72. Nash TH. Lichen biology. Cambridge: Cambridge University Press; 1996. p. 1–7. Bonfante P, Genre A. Mechanisms underlying beneficial plant–fungus interactions in mycorrhizal symbiosis. Nat Commun. 2010;1:48. Taylor MW, Radax R, Steger D, Wagner M. Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev. 2007;71:295–347. Shreiner AB, Kao JY, Young VB. The gut microbiome in health and in disease. Curr Opin Gastroenterol. 2015;31:69–75. Sanchez JF, Somoza AD, Keller NP, Wang CCC, Rep NP. Advances in Aspergillus secondary metabolite research in the post-genomic era. Nat Prod Rep. 2012;29:351–71. Inglis DO, Binkley J, Skrzypek MS, Arnaud MB, Cerqueira GC, Shah P, et al. Comprehensive annotation of secondary metabolite biosynthetic genes and gene clusters of Aspergillus nidulans, A. fumigatus, A. niger and A. oryzae. BMC Microbiol. 2013;13:91. Lim FY, Sanchez JF, Wang CCC, Keller NP. Toward awakening cryptic secondary metabolite gene clusters in filamentous fungi. Methods Enzymol. 2012;517:303–24. Yu J-H, Keller N. Regulation of secondary metabolism in filamentous fungi. Annu Rev Phytopathol. 2005;43:437–58. Shwab EK, Keller NP. Regulation of secondary metabolite production in filamentous ascomycetes. Mycol Res. 2008;112:225–30. Ruiz B, Chávez A, Forero A, García-Huante Y, Romero A, Sánchez M, et al. Production of microbial secondary metabolites: regulation by the carbon source. Crit Rev Microbiol. 2010;36:146–67. Bérdy J. Bioactive microbial metabolites. J Antibiot. 2005;58:1–26. Wu C, Zacchetti B, Ram AFJ, van Wezel GP, Claessen D, Hae Choi Y. Expanding the chemical space for natural products by Aspergillus–Streptomyces co-cultivation and biotransformation. Sci Rep. 2015;5:10868. Schroeckh V, Scherlach K, Nützmann H-W, Shelest E, Schmidt-Heck W, Schuemann J, et al. Intimate bacterial–fungal interaction triggers biosynthesis of archetypal polyketides in Aspergillus nidulans. Proc Natl Acad Sci USA. 2009;106:14558–63. König CC, Scherlach K, Schroeckh V, Horn F, Nietzsche S, Brakhage AA, et al. Bacterium induces cryptic meroterpenoid pathway in the pathogenic fungus Aspergillus fumigatus. ChemBioChem. 2013;14:938–42. Onaka H, Mori Y, Igarashi Y, Furumai T. Mycolic acid-containing bacteria induce natural-product biosynthesis in Streptomyces species. Appl Environ Microbiol. 2011;77:400–6. Ross C, Opel V, Scherlach K, Hertweck C. Biosynthesis of antifungal and antibacterial polyketides by Burkholderia gladioli in coculture with Rhizopus microsporus. Mycoses. 2014;57:48–55. Benoit I, van den Esker MH, Patyshakuliyeva A, Mattern DJ, Blei F, Zhou M, et al. Bacillus subtilis attachment to Aspergillus niger hyphae results in mutually altered metabolism. Environ Microbiol. 2015;17:2099–113. de Lima Procópio RE, da Silva IR, Martins MK, de Azevedo JL, de Araújo JM. Antibiotics produced by Streptomyces. Braz J Infect Dis. 2012;16:466–71. Liu G, Chater KF, Chandra G, Niu G, Tan H. Molecular regulation of antibiotic biosynthesis in Streptomyces. Microbiol Mol Biol Rev. 2013;77:112–43. Svahn KS, Chryssanthou E, Olsen B, Bohlin L, Göransson U. Penicillium nalgiovense Laxa isolated from Antarctica is a new source of the antifungal metabolite amphotericin B. Fungal Biol Biotechnol. 2015;2:1. Brown GD, Denning DW, Levitz SM. Tackling human fungal infections. Science. 2012;336:647. Denning DW, Bromley MJ. How to bolster the antifungal pipeline. Science. 2015;347:1414–6. Perros BM. A sustainable model for antibiotics—How can we foster the development of novel drugs against resistant bacteria? Science. 2015;347:1062–4. Baker BS. A return to the pre-antimicrobial era? Science. 2015;347:1064–6. Payne DJ, Gwynn MN, Holmes DJ, Pompliano DL. Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat Rev Drug Discov. 2007;6:29–40. Büttel Z, Díaz R, Dirnberger B, Flak M, Grijseels S, Kwon MJ, et al. Unlocking the potential of fungi: the QuantFung project. Fungal Biol Biotechnol. 2015;2:6. Meyer V, Nevoigt E, Wiemann P. The art of design. Fungal Genet Biol. 2016;89:1–2. Meyer V. Genetic engineering of filamentous fungi—progress, obstacles and future trends. Biotechnol Adv. 2008;26:177–85. Meyer V, Fiedler M, Nitsche B, King R. The cell factory Aspergillus enters the big data era: opportunities and challenges for optimising product formation. Adv Biochem Eng Biotechnol. 2015;149:91–132. Scazzocchio C. Fungal biology in the post-genomic era. Fungal Biol Biotechnol. 2014;1:7. Cairns TC, Studholme DJ, Talbot NJ, Haynes K. New and improved techniques for the study of pathogenic fungi. Trends Microbiol. 2016;24:35–50. Madigan MT, Martinko JM, Bender KS, Buckley DH, Stahl DA. Brock biology of microorganisms. 14th ed. Boston: Benjamin Cummings; 2014. https://www.youtube.com/watch?v=0Rnq1NpHdmw. Accessed 16 June 2016. http://www.djerassi.com/. Accessed 16 June 2016. https://www.theguardian.com/science/2006/oct/21/uk.books. Accessed 16 June 2016. https://www.youtube.com/watch?v=ysxG5jFeTME. Accessed 16 June 2016. Jean-Claude P. Antibiotic resistance: the emergence of plasmid-mediated colistin resistance enhances the need of a proactive one-health approach. FEMS Microbiol Lett. 2016;363:1–2. Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R, Spencer J, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis. 2016;16:161–8. http://www.scienceslam-darmstadt.de/. Accessed 16 June 2016. https://microbeslam.wordpress.com/. Accessed 16 June 2016. http://www.microbialart.com/galleries/fleming/. Accessed 16 June 2016. Snow CP. The two cultures. New York: Cambridge University Press; 1998. http://www.mayayoghurt.net (Maya Yoghurt, artist website of Maja Smrekar). Accessed 16 June 2016. https://2016.transmediale.de/content/1000-handshakes (1000 Handshakes, website of Transmediale 2016). Accessed 16 June 2016. Magrini B. Hackteria: an example of neomodern activism. In: Aceti L, Jaschko S, Stallabrass J, Balaskas B, editors. Red art: new utopias in data capitalism, Vol. 20. Leonardo Electronic Almanac. San Francisco: Leonardo/ISAST; 2014. p. 58–71. http://www.daisyginsberg.com/work/designing-for-the-sixth-extinction. Accessed 16 June 2016. https://twitter.com/laurasprechmann/status/662165383470710784. Accessed 16 June 2016.