Lessons in PROTAC Design from Selective Degradation with a Promiscuous Warhead
Tóm tắt
Từ khóa
Tài liệu tham khảo
An, 2017, pSILAC mass spectrometry reveals ZFP91 as IMiD-dependent substrate of the CRL4CRBN ubiquitin ligase, Nat. Commun., 8, 15398, 10.1038/ncomms15398
Bondeson, 2015, Catalytic in vivo protein knockdown by small-molecule PROTACs, Nat. Chem. Biol., 11, 611, 10.1038/nchembio.1858
Buckley, 2012, Targeting the von Hippel-Lindau E3 ubiquitin ligase using small molecules to disrupt the VHL/HIF-1α interaction, J. Am. Chem. Soc., 134, 4465, 10.1021/ja209924v
Buckley, 2012, Small-molecule inhibitors of the interaction between the E3 ligase VHL and HIF1α, Angew. Chem. Int. Ed, 51, 11463, 10.1002/anie.201206231
Buckley, 2015, HaloPROTACS: use of small molecule PROTACs to induce degradation of HaloTag fusion proteins, ACS Chem. Biol., 10, 1831, 10.1021/acschembio.5b00442
Burslem, 2017, The advantages of targeted protein degradation over inhibition: an RTK case study, Cell. Chem. Biol., 25, 67, 10.1016/j.chembiol.2017.09.009
Chamberlain, 2014, Structure of the human Cereblon-DDB1-lenalidomide complex reveals basis for responsiveness to thalidomide analogs, Nat. Struct. Mol. Biol., 21, 803, 10.1038/nsmb.2874
Deshaies, 2009, RING domain E3 ubiquitin ligases, Annu. Rev. Biochem., 78, 399, 10.1146/annurev.biochem.78.101807.093809
Douglass, 2013, A comprehensive mathematical model for three-body binding equilibria, J. Am. Chem. Soc., 135, 6092, 10.1021/ja311795d
Duncan, 2012, Dynamic reprogramming of the kinome in response to targeted MEK inhibition in triple-negative breast cancer, Cell, 149, 307, 10.1016/j.cell.2012.02.053
Fabian, 2005, A small molecule-kinase interaction map for clinical kinase inhibitors, Nat. Biotechnol., 23, 329, 10.1038/nbt1068
Field, 2017, Selective downregulation of JAK2 and JAK3 by an ATP-competitive pan-JAK inhibitor, ACS Chem. Biol., 12, 1183, 10.1021/acschembio.7b00116
Fischer, 2014, Structure of the DDB1-CRBN E3 ubiquitin ligase in complex with thalidomide, Nature, 512, 49, 10.1038/nature13527
Gadd, 2017, Structural basis of PROTAC cooperative recognition for selective protein degradation, Nat. Chem. Biol., 13, 514, 10.1038/nchembio.2329
Galdeano, 2014, Structure-guided design and optimization of small molecules targeting the protein-protein interaction between the von Hippel-Lindau (VHL) E3 ubiquitin ligase and the hypoxia inducible factor (HIF) alpha subunit with in vitro nanomolar affinities, J. Med. Chem., 57, 8657, 10.1021/jm5011258
Guharoy, 2016, Design principles involving protein disorder facilitate specific substrate selection and degradation by the ubiquitin-proteasome system, J. Biol. Chem., 291, 6723, 10.1074/jbc.R115.692665
Hartmann, 2014, Thalidomide mimics uridine binding to an aromatic cage in cereblon, J. Struct. Biol., 188, 225, 10.1016/j.jsb.2014.10.010
Hon, 2002, Structural basis for the recognition of hydroxyproline in HIF-1 alpha by pVHL, Nature, 417, 975, 10.1038/nature00767
Karaman, 2008, A quantitative analysis of kinase inhibitor selectivity, Nat. Biotechnol., 26, 127, 10.1038/nbt1358
Krönke, 2014, Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells, Science, 343, 301, 10.1126/science.1244851
Lai, 2016, Modular PROTAC design for the degradation of oncogenic BCR-ABL, Angew. Chem. Int. Ed, 55, 807, 10.1002/anie.201507634
Lazo, 2016, Drugging undruggable molecular cancer targets, Annu. Rev. Pharmacol. Toxicol., 56, 23, 10.1146/annurev-pharmtox-010715-103440
Lu, 2014, The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins, Science, 343, 305, 10.1126/science.1244917
Lu, 2015, Hijacking the E3 ubiquitin ligase cereblon to efficiently target BRD4, Chem. Biol., 22, 755, 10.1016/j.chembiol.2015.05.009
Mattiroli, 2014, Lysine-targeting specificity in ubiquitin and ubiquitin-like modification pathways, Nat. Struct. Mol. Biol., 21, 308, 10.1038/nsmb.2792
Matyskiela, 2016, A novel cereblon modulator recruits GSPT1 to the CRL4CRBN ubiquitin ligase, Nature, 535, 252, 10.1038/nature18611
McAlister, 2014, MultiNotch MS3 enables accurate, sensitive, and multiplexed detection of differential expression across cancer cell line proteomes, Anal. Chem., 86, 7150, 10.1021/ac502040v
McAlister, 2012, Increasing the multiplexing capacity of TMTs using reporter ion isotopologues with isobaric masses, Anal. Chem., 84, 7469, 10.1021/ac301572t
Min, 2002, Structure of an HIF-1alpha -pVHL complex: hydroxyproline recognition in signaling, Science, 296, 1886, 10.1126/science.1073440
Nguyen, 2016, Glutamine triggers acetylation-dependent degradation of glutamine synthetase via the thalidomide receptor cereblon, Mol. Cell, 61, 809, 10.1016/j.molcel.2016.02.032
Ohoka, 2017, In vivo knockdown of pathogenic proteins via specific and nongenetic IAP-dependent protein erasers (SNIPERs), J. Biol. Chem., 292, 4556, 10.1074/jbc.M116.768853
Ostrem, 2016, Direct small-molecule inhibitors of KRAS: from structural insights to mechanism-based design, Nat. Rev. Drug Discov., 15, 771, 10.1038/nrd.2016.139
Ottis, 2017, Assessing different E3 ligases for small molecule-induced protein ubiquitination and degradation, ACS Chem. Biol., 10.1021/acschembio.7b00485
Petzold, 2016, Structural basis of lenalidomide-induced CK1α degradation by the CRL4CRBN ubiquitin ligase, Nature, 532, 127, 10.1038/nature16979
Polier, 2013, ATP-competitive inhibitors block protein kinase recruitment to the Hsp90-Cdc37 system, Nat. Chem. Biol., 9, 307, 10.1038/nchembio.1212
Qian, 2009, Inhibition of tumor cell growth, invasion, and metastasis by EXEL-2880 (XL880, GSK1363089), a novel inhibitor of HGF and VEGF receptor tyrosine kinases, Cancer Res., 69, 8009, 10.1158/0008-5472.CAN-08-4889
Raina, 2016, PROTAC-induced BET protein degradation as a therapy for castration-resistant prostate cancer, Proc. Natl. Acad. Sci. USA, 113, 7124, 10.1073/pnas.1521738113
Remillard, 2017, Degradation of the BAF complex factor BRD9 by heterobifunctional ligands, Angew. Chem. Int. Ed, 56, 5738, 10.1002/anie.201611281
Sakamoto, 2001, Protacs: chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation, Proc. Natl. Acad. Sci. USA, 98, 8554, 10.1073/pnas.141230798
Schneekloth, 2004, Chemical genetic control of protein levels: selective in vivo targeted degradation, J. Am. Chem. Soc., 126, 3748, 10.1021/ja039025z
Ting, 2011, MS3 eliminates ratio distortion in isobaric multiplexed quantitative proteomics, Nat. Methods, 8, 937, 10.1038/nmeth.1714
Toure, 2016, Small-molecule PROTACS: new approaches to protein degradation, Angew. Chem. Int. Ed, 55, 1966, 10.1002/anie.201507978
Vijayan, 2015, Conformational analysis of the DFG-out kinase motif and biochemical profiling of structurally validated type II inhibitors, J. Med. Chem., 58, 466, 10.1021/jm501603h
Watterson, 2013, Development of novel in vivo chemical probes to address CNS protein kinase involvement in synaptic dysfunction, PLoS One, 8, e66226, 10.1371/journal.pone.0066226
Weekes, 2014, Quantitative temporal viromics: an approach to investigate host-pathogen interaction, Cell, 157, 1460, 10.1016/j.cell.2014.04.028
Winter, 2015, Phthalimide conjugation as a strategy for in vivo target protein degradation, Science, 348, 1376, 10.1126/science.aab1433