Lessons from arbuscular mycorrhizal fungal genomes

Current Opinion in Microbiology - Tập 75 - Trang 102357 - 2023
Luisa Lanfranco1, Paola Bonfante1
1Department of Life Sciences and Systems Biology, University of Turin, viale Mattioli 25, 10125, Turin, Italy

Tài liệu tham khảo

Brundrett, 2018, Evolutionary history of mycorrhizal symbioses and global host plant diversity, New Phytol, 220, 1108, 10.1111/nph.14976 Genre, 2020, Unique and common traits in mycorrhizal symbioses, Nat Rev Microbiol, 18, 649, 10.1038/s41579-020-0402-3 Bonfante, 2020, Mucoromycota: going to the roots of plant-interacting fungi, Fungal Biol Rev, 34, 100, 10.1016/j.fbr.2019.12.003 Montoliu-Nerin, 2021, In-depth phylogenomic analysis of arbuscular mycorrhizal fungi based on a comprehensive set of de novo genome assemblies, Front Fungal Biol, 2, 10.3389/ffunb.2021.716385 Venice, 2020, At the nexus of three kingdoms: the genome of the mycorrhizal fungus Gigaspora margarita provides insights into plant, endobacterial and fungal interactions, Environ Microbiol, 22, 122, 10.1111/1462-2920.14827 Malar, 2022, Early branching arbuscular mycorrhizal fungus Paraglomus occultum carries a small and repeat-poor genome compared to relatives in the Glomeromycotina, Microb Genom, 8 Lin, 2014, Single nucleus genome sequencing reveals high similarity among nuclei of an endomycorrhizal fungus, PLoS Genet, 10, 10.1371/journal.pgen.1004078 Yildirir, 2022, Long reads and Hi-C sequencing illuminate the two-compartment genome of the model arbuscular mycorrhizal symbiont Rhizophagus irregularis, New Phytol, 233, 1097, 10.1111/nph.17842 Manley, 2023, A highly contiguous genome assembly reveals sources of genomic novelty in the symbiotic fungus Rhizophagus irregularis, Genes Genomes Genet, 13 Sperschneider, 2023, Resolving the haplotypes of arbuscular mycorrhizal fungi highlights the role of two nuclear populations in host interactions, bioRxiv Ropars, 2016, Evidence for the sexual origin of heterokaryosis in arbuscular mycorrhizal fungi, Nat Microbiol, 1, 10.1038/nmicrobiol.2016.33 Chen, 2018, Single nucleus sequencing reveals evidence of inter-nucleus recombination in arbuscular mycorrhizal fungi, eLife, 8 van Creij, 2023, Stochastic nuclear organization and host‑dependent allele contribution in Rhizophagus irregularis, BMC Genom, 24, 10.1186/s12864-023-09126-6 Cornell, 2022, The arbuscular mycorrhizal fungus Rhizophagus irregularis harmonizes nuclear dynamics in the presence of distinct abiotic factors, Fungal Genet Biol, 158, 10.1016/j.fgb.2021.103639 Kokkoris, 2021, Host identity influences nuclear dynamics in arbuscular mycorrhizal fungi, Curr Biol, 31, 1531, 10.1016/j.cub.2021.01.035 McGale, 2022, Integrating plant and fungal quantitative genetics to improve the ecological and agricultural applications of mycorrhizal symbioses, Curr Opin Microbiol, 70, 10.1016/j.mib.2022.102205 Mathieu, 2018, Arbuscular mycorrhizal fungi: intraspecific diversity and pangenomes, New Phytol, 220, 1129, 10.1111/nph.15275 Reinhardt, 2021, Lineage-specific genes and cryptic sex: parallels and differences between arbuscular mycorrhizal fungi and fungal pathogens, Trends Plant Sci, 26, 111, 10.1016/j.tplants.2020.09.006 Savary, 2020, Genetic variation and evolutionary history of a mycorrhizal fungus regulate the currency of exchange in symbiosis with the food security crop cassava, ISME J, 14, 1333, 10.1038/s41396-020-0606-6 Dallaire, 2021, Transcriptional activity and epigenetic regulation of transposable elements in the symbiotic fungus Rhizophagus irregularis., Genome Res, 31, 2290, 10.1101/gr.275752.121 Sanchez-Vallet, 2018, The genome biology of effector gene evolution in filamentous plant pathogens, Annu Rev Phytopathol, 56, 21, 10.1146/annurev-phyto-080516-035303 Silvestri, 2019, In silico analysis of fungal small RNA accumulation reveals putative plant mRNA targets in the symbiosis between an arbuscular mycorrhizal fungus and its host plant, BMC Genom, 20, 10.1186/s12864-019-5561-0 Silvestri, 2020, Different genetic sources contribute to the small RNA population in the arbuscular mycorrhizal fungus Gigaspora margarita, Front Microbiol, 11, 10.3389/fmicb.2020.00395 Nowell, 2021, Evolutionary dynamics of transposable elements in bdelloid rotifers, Elife, 10, 10.7554/eLife.63194 Weiberg, 2013, Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways, Science, 342, 118, 10.1126/science.1239705 Chaturvedi, 2021, The methylome of the model arbuscular mycorrhizal fungus, Rhizophagus irregularis, shares characteristics with early diverging fungi and Dikarya, Commun Biol, 4, 10.1038/s42003-021-02414-5 Ceballos, 2019, Using variation in arbuscular mycorrhizal fungi to drive the productivity of the food security crop cassava, bioRxiv Wang, 2021, A nuclear-targeted effector of Rhizophagus irregularis interferes with histone 2B mono-ubiquitination to promote arbuscular mycorrhization., New Phytol, 230, 1142, 10.1111/nph.17236 Luginbuehl, 2017, Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant, Science, 356, 1175, 10.1126/science.aan0081 Jiang, 2017, Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi, Science, 356, 1172, 10.1126/science.aam9970 Brands, 2022, Two AMP-binding domain proteins from Rhizophagus irregularis involved in import of exogenous fatty acids, Mol Plant Microb Interact, 35, 464, 10.1094/MPMI-01-22-0026-R Tanaka, 2022, Asymbiotic mass production of the arbuscular mycorrhizal fungus Rhizophagus clarus, Commun Biol, 5, 10.1038/s42003-021-02967-5 Srisom, 2020, New method for arbuscular mycorrhizal fungus spore separation using a microfluidic device based on manual temporary flow diversion, Mycorrhiza, 30, 789, 10.1007/s00572-020-00986-4 Paré, 2022, A simple and low-cost technique to initiate single-spore cultures of arbuscular mycorrhizal fungi using a superabsorbent polymer, Symbiosis, 88, 61, 10.1007/s13199-022-00878-5 Salomon, 2022, Global evaluation of commercial arbuscular mycorrhizal inoculants under greenhouse and field conditions, Appl Soil Ecol, 169, 10.1016/j.apsoil.2021.104225 Balzergue, 2011, The regulation of arbuscular mycorrhizal symbiosis by phosphate in pea involves early and systemic signalling events, J Exp Bot, 62, 1049, 10.1093/jxb/erq335 Breuillin, 2010, Phosphate systemically inhibits development of arbuscular mycorrhiza in Petunia hybrida and represses genes involved in mycorrhizal functioning, Plant J, 64, 1002, 10.1111/j.1365-313X.2010.04385.x Shi, 2021, A phosphate starvation response-centered network regulates mycorrhizal symbiosis, Cell, 184, 5527, 10.1016/j.cell.2021.09.030 Das, 2022, Phosphate starvation response transcription factors enable arbuscular mycorrhiza symbiosis, Nat Commun, 13, 10.1038/s41467-022-27976-8 Ezawa, 2018, How do arbuscular mycorrhizal fungi handle phosphate? New insight into fine-tuning of phosphate metabolism, New Phytol, 220, 1116, 10.1111/nph.15187 Xie, 2022, SPX domain-containing phosphate transporter from Rhizophagus irregularis handles phosphate homeostasis at symbiotic interface of arbuscular mycorrhizas, New Phytol, 234, 650, 10.1111/nph.17973 Javot, 2007, A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis, Proc Natl Acad Sci, 104, 1720, 10.1073/pnas.0608136104 Spatafora, 2016, A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data, Mycologia, 108, 1028, 10.3852/16-042 Malar, 2021, The genome of Geosiphon pyriformis reveals ancestral traits linked to the emergence of the arbuscular mycorrhizal symbiosis, Curr Biol, 31, 1570, 10.1016/j.cub.2021.01.058 Lanfranco, 2018, Strigolactones cross the kingdoms: plants, fungi, and bacteria in the arbuscular mycorrhizal symbiosis, J Exp Bot, 69, 2175, 10.1093/jxb/erx432 Kyozuka, 2022, Origins and evolution of the dual functions of strigolactones as rhizosphere signaling molecules and plant hormones, Curr Opin Plant Biol, 65, 10.1016/j.pbi.2021.102154 Votta, 2022, Zaxinone synthase controls arbuscular mycorrhizal colonization level in rice, Plant J, 111, 1688, 10.1111/tpj.15917 Mashiguchi, 2021, Strigolactone biosynthesis, transport and perception, Plant J, 105, 335, 10.1111/tpj.15059 Fiorilli, 2022, A structural homologue of the plant receptor D14 mediates responses to strigolactones in the fungal phytopathogen Cryphonectria parasitica, New Phytyol, 234, 1003 Maillet, 2011, Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza, Nature, 469, 58, 10.1038/nature09622 Genre, 2013, Short-chain chitin oligomers from arbuscular mycorrhizal fungi trigger nuclear Ca2+ spiking in Medicago truncatula roots and their production is enhanced by strigolactone., N Phytol, 198, 190, 10.1111/nph.12146 Choi, 2018, Mechanisms underlying establishment of arbuscular mycorrhizal symbioses, Annu Rev Phytopathol, 56, 1, 10.1146/annurev-phyto-080516-035521 Pimprikar, 2018, Transcriptional regulation of arbuscular mycorrhiza development, Plant Cell Physiol, 59, 673, 10.1093/pcp/pcy024 Volpe, 2023, Long-lasting impact of chitooligosaccharide application on strigolactone biosynthesis and fungal accommodation promotes arbuscular mycorrhiza in Medicago truncatula, N Phytol, 237, 2316, 10.1111/nph.18697 Rush, 2020, Lipo-chitooligosaccharides as regulatory signals of fungal growth and development, Nat Comm, 11, 10.1038/s41467-020-17615-5 Zeng, 2020, A lysin motif effector subverts chitin-triggered immunity to facilitate arbuscular mycorrhizal symbiosis., N Phytol, 225, 448, 10.1111/nph.16245 Gutjahr, 2015, Rice perception of symbiotic arbuscular mycorrhizal fungi requires the karrikin receptor complex, Science, 350, 1521, 10.1126/science.aac9715 Choi, 2020, The negative regulator SMAX1 controls mycorrhizal symbiosis and strigolactone biosynthesis in rice, Nat Commun, 11, 10.1038/s41467-020-16021-1 Pons, 2020, Phytohormone production by the arbuscular mycorrhizal fungus Rhizophagus irregularis, PLoS One, 15, 10.1371/journal.pone.0240886 Jiang, 2021, Arbuscular mycorrhizal fungi enhance mineralisation of organic phosphorus by carrying bacteria along their extraradical hyphae, N Phytol, 230, 304, 10.1111/nph.17081 Wang, 2023, A core microbiome in the hyphosphere of arbuscular mycorrhizal fungi has functional significance in organic phosphorus mineralization, N Phytol, 238, 859, 10.1111/nph.18642 Emmet, 2021, Conserved and reproducible bacterial communities associate with extraradical hyphae of arbuscular mycorrhizal fungi, ISME J, 15, 2276, 10.1038/s41396-021-00920-2 Venice, 2021, Symbiotic responses of Lotus japonicus to two isogenic lines of a mycorrhizal fungus differing in the presence/absence of an endobacterium., Plant J, 108, 1547, 10.1111/tpj.15578 Turina, 2018, The virome of the arbuscular mycorrhizal fungus Gigaspora margarita reveals the first report of DNA fragments corresponding to replicating non-retroviral RNA viruses in Fungi., Environ Microbiol, 20, 2012, 10.1111/1462-2920.14060