Lessons from arbuscular mycorrhizal fungal genomes
Tài liệu tham khảo
Brundrett, 2018, Evolutionary history of mycorrhizal symbioses and global host plant diversity, New Phytol, 220, 1108, 10.1111/nph.14976
Genre, 2020, Unique and common traits in mycorrhizal symbioses, Nat Rev Microbiol, 18, 649, 10.1038/s41579-020-0402-3
Bonfante, 2020, Mucoromycota: going to the roots of plant-interacting fungi, Fungal Biol Rev, 34, 100, 10.1016/j.fbr.2019.12.003
Montoliu-Nerin, 2021, In-depth phylogenomic analysis of arbuscular mycorrhizal fungi based on a comprehensive set of de novo genome assemblies, Front Fungal Biol, 2, 10.3389/ffunb.2021.716385
Venice, 2020, At the nexus of three kingdoms: the genome of the mycorrhizal fungus Gigaspora margarita provides insights into plant, endobacterial and fungal interactions, Environ Microbiol, 22, 122, 10.1111/1462-2920.14827
Malar, 2022, Early branching arbuscular mycorrhizal fungus Paraglomus occultum carries a small and repeat-poor genome compared to relatives in the Glomeromycotina, Microb Genom, 8
Lin, 2014, Single nucleus genome sequencing reveals high similarity among nuclei of an endomycorrhizal fungus, PLoS Genet, 10, 10.1371/journal.pgen.1004078
Yildirir, 2022, Long reads and Hi-C sequencing illuminate the two-compartment genome of the model arbuscular mycorrhizal symbiont Rhizophagus irregularis, New Phytol, 233, 1097, 10.1111/nph.17842
Manley, 2023, A highly contiguous genome assembly reveals sources of genomic novelty in the symbiotic fungus Rhizophagus irregularis, Genes Genomes Genet, 13
Sperschneider, 2023, Resolving the haplotypes of arbuscular mycorrhizal fungi highlights the role of two nuclear populations in host interactions, bioRxiv
Ropars, 2016, Evidence for the sexual origin of heterokaryosis in arbuscular mycorrhizal fungi, Nat Microbiol, 1, 10.1038/nmicrobiol.2016.33
Chen, 2018, Single nucleus sequencing reveals evidence of inter-nucleus recombination in arbuscular mycorrhizal fungi, eLife, 8
van Creij, 2023, Stochastic nuclear organization and host‑dependent allele contribution in Rhizophagus irregularis, BMC Genom, 24, 10.1186/s12864-023-09126-6
Cornell, 2022, The arbuscular mycorrhizal fungus Rhizophagus irregularis harmonizes nuclear dynamics in the presence of distinct abiotic factors, Fungal Genet Biol, 158, 10.1016/j.fgb.2021.103639
Kokkoris, 2021, Host identity influences nuclear dynamics in arbuscular mycorrhizal fungi, Curr Biol, 31, 1531, 10.1016/j.cub.2021.01.035
McGale, 2022, Integrating plant and fungal quantitative genetics to improve the ecological and agricultural applications of mycorrhizal symbioses, Curr Opin Microbiol, 70, 10.1016/j.mib.2022.102205
Mathieu, 2018, Arbuscular mycorrhizal fungi: intraspecific diversity and pangenomes, New Phytol, 220, 1129, 10.1111/nph.15275
Reinhardt, 2021, Lineage-specific genes and cryptic sex: parallels and differences between arbuscular mycorrhizal fungi and fungal pathogens, Trends Plant Sci, 26, 111, 10.1016/j.tplants.2020.09.006
Savary, 2020, Genetic variation and evolutionary history of a mycorrhizal fungus regulate the currency of exchange in symbiosis with the food security crop cassava, ISME J, 14, 1333, 10.1038/s41396-020-0606-6
Dallaire, 2021, Transcriptional activity and epigenetic regulation of transposable elements in the symbiotic fungus Rhizophagus irregularis., Genome Res, 31, 2290, 10.1101/gr.275752.121
Sanchez-Vallet, 2018, The genome biology of effector gene evolution in filamentous plant pathogens, Annu Rev Phytopathol, 56, 21, 10.1146/annurev-phyto-080516-035303
Silvestri, 2019, In silico analysis of fungal small RNA accumulation reveals putative plant mRNA targets in the symbiosis between an arbuscular mycorrhizal fungus and its host plant, BMC Genom, 20, 10.1186/s12864-019-5561-0
Silvestri, 2020, Different genetic sources contribute to the small RNA population in the arbuscular mycorrhizal fungus Gigaspora margarita, Front Microbiol, 11, 10.3389/fmicb.2020.00395
Nowell, 2021, Evolutionary dynamics of transposable elements in bdelloid rotifers, Elife, 10, 10.7554/eLife.63194
Weiberg, 2013, Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways, Science, 342, 118, 10.1126/science.1239705
Chaturvedi, 2021, The methylome of the model arbuscular mycorrhizal fungus, Rhizophagus irregularis, shares characteristics with early diverging fungi and Dikarya, Commun Biol, 4, 10.1038/s42003-021-02414-5
Ceballos, 2019, Using variation in arbuscular mycorrhizal fungi to drive the productivity of the food security crop cassava, bioRxiv
Wang, 2021, A nuclear-targeted effector of Rhizophagus irregularis interferes with histone 2B mono-ubiquitination to promote arbuscular mycorrhization., New Phytol, 230, 1142, 10.1111/nph.17236
Luginbuehl, 2017, Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant, Science, 356, 1175, 10.1126/science.aan0081
Jiang, 2017, Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi, Science, 356, 1172, 10.1126/science.aam9970
Brands, 2022, Two AMP-binding domain proteins from Rhizophagus irregularis involved in import of exogenous fatty acids, Mol Plant Microb Interact, 35, 464, 10.1094/MPMI-01-22-0026-R
Tanaka, 2022, Asymbiotic mass production of the arbuscular mycorrhizal fungus Rhizophagus clarus, Commun Biol, 5, 10.1038/s42003-021-02967-5
Srisom, 2020, New method for arbuscular mycorrhizal fungus spore separation using a microfluidic device based on manual temporary flow diversion, Mycorrhiza, 30, 789, 10.1007/s00572-020-00986-4
Paré, 2022, A simple and low-cost technique to initiate single-spore cultures of arbuscular mycorrhizal fungi using a superabsorbent polymer, Symbiosis, 88, 61, 10.1007/s13199-022-00878-5
Salomon, 2022, Global evaluation of commercial arbuscular mycorrhizal inoculants under greenhouse and field conditions, Appl Soil Ecol, 169, 10.1016/j.apsoil.2021.104225
Balzergue, 2011, The regulation of arbuscular mycorrhizal symbiosis by phosphate in pea involves early and systemic signalling events, J Exp Bot, 62, 1049, 10.1093/jxb/erq335
Breuillin, 2010, Phosphate systemically inhibits development of arbuscular mycorrhiza in Petunia hybrida and represses genes involved in mycorrhizal functioning, Plant J, 64, 1002, 10.1111/j.1365-313X.2010.04385.x
Shi, 2021, A phosphate starvation response-centered network regulates mycorrhizal symbiosis, Cell, 184, 5527, 10.1016/j.cell.2021.09.030
Das, 2022, Phosphate starvation response transcription factors enable arbuscular mycorrhiza symbiosis, Nat Commun, 13, 10.1038/s41467-022-27976-8
Ezawa, 2018, How do arbuscular mycorrhizal fungi handle phosphate? New insight into fine-tuning of phosphate metabolism, New Phytol, 220, 1116, 10.1111/nph.15187
Xie, 2022, SPX domain-containing phosphate transporter from Rhizophagus irregularis handles phosphate homeostasis at symbiotic interface of arbuscular mycorrhizas, New Phytol, 234, 650, 10.1111/nph.17973
Javot, 2007, A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis, Proc Natl Acad Sci, 104, 1720, 10.1073/pnas.0608136104
Spatafora, 2016, A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data, Mycologia, 108, 1028, 10.3852/16-042
Malar, 2021, The genome of Geosiphon pyriformis reveals ancestral traits linked to the emergence of the arbuscular mycorrhizal symbiosis, Curr Biol, 31, 1570, 10.1016/j.cub.2021.01.058
Lanfranco, 2018, Strigolactones cross the kingdoms: plants, fungi, and bacteria in the arbuscular mycorrhizal symbiosis, J Exp Bot, 69, 2175, 10.1093/jxb/erx432
Kyozuka, 2022, Origins and evolution of the dual functions of strigolactones as rhizosphere signaling molecules and plant hormones, Curr Opin Plant Biol, 65, 10.1016/j.pbi.2021.102154
Votta, 2022, Zaxinone synthase controls arbuscular mycorrhizal colonization level in rice, Plant J, 111, 1688, 10.1111/tpj.15917
Mashiguchi, 2021, Strigolactone biosynthesis, transport and perception, Plant J, 105, 335, 10.1111/tpj.15059
Fiorilli, 2022, A structural homologue of the plant receptor D14 mediates responses to strigolactones in the fungal phytopathogen Cryphonectria parasitica, New Phytyol, 234, 1003
Maillet, 2011, Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza, Nature, 469, 58, 10.1038/nature09622
Genre, 2013, Short-chain chitin oligomers from arbuscular mycorrhizal fungi trigger nuclear Ca2+ spiking in Medicago truncatula roots and their production is enhanced by strigolactone., N Phytol, 198, 190, 10.1111/nph.12146
Choi, 2018, Mechanisms underlying establishment of arbuscular mycorrhizal symbioses, Annu Rev Phytopathol, 56, 1, 10.1146/annurev-phyto-080516-035521
Pimprikar, 2018, Transcriptional regulation of arbuscular mycorrhiza development, Plant Cell Physiol, 59, 673, 10.1093/pcp/pcy024
Volpe, 2023, Long-lasting impact of chitooligosaccharide application on strigolactone biosynthesis and fungal accommodation promotes arbuscular mycorrhiza in Medicago truncatula, N Phytol, 237, 2316, 10.1111/nph.18697
Rush, 2020, Lipo-chitooligosaccharides as regulatory signals of fungal growth and development, Nat Comm, 11, 10.1038/s41467-020-17615-5
Zeng, 2020, A lysin motif effector subverts chitin-triggered immunity to facilitate arbuscular mycorrhizal symbiosis., N Phytol, 225, 448, 10.1111/nph.16245
Gutjahr, 2015, Rice perception of symbiotic arbuscular mycorrhizal fungi requires the karrikin receptor complex, Science, 350, 1521, 10.1126/science.aac9715
Choi, 2020, The negative regulator SMAX1 controls mycorrhizal symbiosis and strigolactone biosynthesis in rice, Nat Commun, 11, 10.1038/s41467-020-16021-1
Pons, 2020, Phytohormone production by the arbuscular mycorrhizal fungus Rhizophagus irregularis, PLoS One, 15, 10.1371/journal.pone.0240886
Jiang, 2021, Arbuscular mycorrhizal fungi enhance mineralisation of organic phosphorus by carrying bacteria along their extraradical hyphae, N Phytol, 230, 304, 10.1111/nph.17081
Wang, 2023, A core microbiome in the hyphosphere of arbuscular mycorrhizal fungi has functional significance in organic phosphorus mineralization, N Phytol, 238, 859, 10.1111/nph.18642
Emmet, 2021, Conserved and reproducible bacterial communities associate with extraradical hyphae of arbuscular mycorrhizal fungi, ISME J, 15, 2276, 10.1038/s41396-021-00920-2
Venice, 2021, Symbiotic responses of Lotus japonicus to two isogenic lines of a mycorrhizal fungus differing in the presence/absence of an endobacterium., Plant J, 108, 1547, 10.1111/tpj.15578
Turina, 2018, The virome of the arbuscular mycorrhizal fungus Gigaspora margarita reveals the first report of DNA fragments corresponding to replicating non-retroviral RNA viruses in Fungi., Environ Microbiol, 20, 2012, 10.1111/1462-2920.14060