Ít biến thiên khi sinh trưởng nhanh hơn? Đánh giá thực nghiệm về mối quan hệ giữa tốc độ sinh trưởng với các đặc điểm chức năng của diatom biển Phaeodactylum tricornutum

Hydrobiologia - Trang 1-15 - 2024
Helena Cornelia Laurentia Klip1,2, Cédric Léo Meunier1, Maarten Boersma1,3
1Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Biologische Anstalt Helgoland, Helgoland, Germany
2Flathead Lake Biological Station, University of Montana, Polson, USA
3Naturwissenschaften 2, University of Bremen, Bremen, Germany

Tóm tắt

Sự đa dạng và các yếu tố thúc đẩy cũng như hệ quả của nó là trọng tâm của nghiên cứu sinh thái học. Chủ yếu, các nghiên cứu đã tập trung vào các loài khác nhau, nhưng nếu những nguyên nhân dẫn đến sự gia tăng hoặc giảm sút đa dạng là chung, thì các mô hình quan sát được cũng nên có thể thấy trong các kiểu gen. Như nghiên cứu trước đây cho thấy có sự biến động lớn hơn trong tỷ lệ nitơ/phospho (N/P) giữa các quần thể tảo đơn bào sinh trưởng chậm, so với các quần thể sinh trưởng nhanh, chúng tôi kỳ vọng sẽ quan sát được các mô hình tương tự trong các chủng giống diatom gen đồng nhất phát triển với tốc độ khác nhau. Chúng tôi đã kiểm tra giả thuyết này trong một thí nghiệm trong phòng thí nghiệm được thực hiện với một quần thể đơn bào của diatom Phaeodactylum tricornutum. Sử dụng gradient tốc độ sinh trưởng thu được từ 10 chemostat, chúng tôi đã có thể xác định ảnh hưởng của tốc độ sinh trưởng đến tỷ lệ hóa học nguyên tố của diatom cũng như đến các đặc điểm được chọn, như kích thước và hình dạng tế bào. Kết quả của chúng tôi thực sự cho thấy sự biến thiên liên tế bào ít hơn (trong các đặc điểm được đánh giá ở mức tế bào đơn lẻ) trong các quần thể phát triển nhanh hơn, điều này đi kèm với xu hướng giảm trong tỷ lệ N/P chung. Chúng tôi cho rằng sự biến thiên cao hơn ở các tốc độ sinh trưởng thấp hơn có thể dẫn đến sự biến thiên cao hơn của nguồn thức ăn có sẵn cho các mức dinh dưỡng cao hơn với những hệ quả tiềm năng cho hiệu quả chuyển giao năng lượng và vật chất trong các chuỗi thức ăn biển.

Từ khóa

#đa dạng sinh học #Phaeodactylum tricornutum #tốc độ sinh trưởng #đặc điểm chức năng #chuỗi thức ăn biển

Tài liệu tham khảo

Azam, F., T. Fenchel, J. G. Field, J. Gray, L. Meyer-Reil & F. Thingstad, 1983. The ecological role of water-column microbes in the sea. Marine Ecology Progress Series 10: 257–263. https://doi.org/10.7208/chicago/9780226125534-024. Baert, J. M., F. De Laender, K. Sabbe & C. R. Janssen, 2016. Biodiversity increases functional and compositional resistance, but decreases resilience in phytoplankton communities. Ecology 97: 3433–3440. https://doi.org/10.1002/ecy.1601. Bartual, A., J. A. Galvez & F. Ojeda, 2008. Phenotypic response of the diatom Phaeodactylum tricornutum Bohlin to experimental changes in the inorganic carbon system. Botanica Marina 51: 350–359. https://doi.org/10.1515/BOT.2008.047. Borowitzka, M. A. & B. E. Volcani, 1978. The polymorphic diatom Phaeodactylum tricornutum: Ultrastructure of its morphotypes. Journal of Phycology 14: 10–21. https://doi.org/10.1111/j.1529-8817.1978.tb00625.x. Brandenburg, K. M., S. Wohlrab, U. John, A. Kremp, J. Jerney, B. Krock & D. B. Van de Waal, 2018. Intraspecific trait variation and trade-offs within and across populations of a toxic dinoflagellate. Ecology Letters 21: 1561–1571. https://doi.org/10.1111/ele.13138. Bratbak, G., J. K. Egge & M. Heldal, 1993. Viral mortality of the marine alga Emiliania huxleyi (Haptophyceae) and termination of algal blooms. Marine Ecology Progress Series 93: 39–48. Brussaard, C., R. Riegman, A. Noordeloos, G. Cadée, H. Witte, A. Kop, G. Nieuwland, F. Van Duyl & R. Bak, 1995. Effects of grazing, sedimentation and phytoplankton cell lysis on the structure of a coastal pelagic food web. Marine Ecology Progress Series 123: 259–271. https://doi.org/10.3354/meps123259. Brzezinski, M. A., R. J. Olson & S. W. Chisholm, 1990. Silicon availability and cell-cycle progression in marine diatoms. Marine Ecology Progress Series 67: 83–96. Cardinale, B. J., J. E. Duffy, A. Gonzalez, D. U. Hooper, C. Perrings, P. Venail, A. Narwani, G. M. Mace, D. Tilman & D. A. Wardle, 2012. Biodiversity loss and its impact on humanity. Nature 486: 59–67. https://doi.org/10.1038/nature11148. Carreto, J. & J. Catoggio, 1976. Variations in pigment contents of the diatom Phaeodactylum tricornutum during growth. Marine Biology 36: 105–112. https://doi.org/10.1007/BF00388433/. Clasen, J. L. & J. J. Elser, 2007. The effect of host Chlorella NC64A carbon: phosphorus ratio on the production of Paramecium bursaria Chlorella Virus-1. Freshwater Biology 52: 112–122. https://doi.org/10.1111/j.1365-2427.2006.01677.x. Collins, S. & C. E. Schaum, 2021. Growth strategies of a model picoplankter depend on social milieu and p CO2. Proceedings of the Royal Society B 288: 20211154. https://doi.org/10.1098/rspb.2021.1154. Droop, M., 1974. The nutrient status of algal cells in continuous culture. Journal of the Marine Biological Association of the United Kingdom 54: 825–855. https://doi.org/10.1017/S002531540005760X. Duffy, J. E., B. J. Cardinale, K. E. France, P. B. McIntyre, E. Thébault & M. Loreau, 2007. The functional role of biodiversity in ecosystems: incorporating trophic complexity. Ecology Letters 10: 522–538. https://doi.org/10.1111/j.1461-0248.2007.01037.x. Elrifi, I. R. & D. H. Turpin, 1985. Steady-state luxury consumption and the concept of optimum nutrient ratios: A study with phosphate and nitrate limited Selenastrum minutum (chlorophyta) 1. Journal of Phycology 21: 592–602. https://doi.org/10.1111/j.0022-3646.1985.00592.x. Elser, J. J., D. R. Dobberfuhl, N. A. MacKay & J. H. Schampel, 1996. Organism size, life history, and N: P stoichiometry: toward a unified view of cellular and ecosystem processes. BioScience 46: 674–684. https://doi.org/10.2307/1312897. Elser, J., R. Sterner, E. A. Gorokhova, W. Fagan, T. Markow, J. Cotner, J. Harrison, S. Hobbie, G. Odell & L. Weider, 2008. Biological stoichiometry from genes to ecosystems. Ecology Letters 3: 540–550. https://doi.org/10.1111/j.1461-0248.2000.00185.x. Engel, A., 2000. The role of transparent exopolymer particles (TEP) in the increase in apparent particle stickiness (α) during the decline of a diatom bloom. Journal of Plankton Research 22: 485–497. https://doi.org/10.1093/plankt/22.3.485. Flynn, K. J., J. A. Raven, T. A. V. Rees, Z. Finkel, A. Quigg & J. Beardall, 2010. Is the growth rate hypothesis applicable to microalgae? Journal of Phycology 46: 1–12. https://doi.org/10.1093/plankt/22.3.485. Fowler, S. W. & G. A. Knauer, 1986. Role of large particles in the transport of elements and organic compounds through the oceanic water column. Progress in Oceanography 16: 147–194. https://doi.org/10.1016/0079-6611(86)90032-7. Garcia, N. S., J. A. Bonachela & A. C. Martiny, 2016. Interactions between growth-dependent changes in cell size, nutrient supply and cellular elemental stoichiometry of marine Synechococcus. The ISME Journal 10: 2715–2724. https://doi.org/10.1038/ismej.2016.50. Geider, R. & J. La Roche, 2002. Redfield revisited: variability of C: N: P in marine microalgae and its biochemical basis. European Journal of Phycology 37: 1–17. https://doi.org/10.1017/S0967026201003456. Goldman, J. C., J. J. McCarthy & D. G. Peavey, 1979. Growth rate influence on the chemical composition of phytoplankton in oceanic waters. Nature 279: 210–215. https://doi.org/10.1038/279210a0. Grasshoff, K., K. Kremling & M. Ehrhardt, 1999. Methods of seawater analysis, Wiley, VCH, Weinheim: Groß, E., M. Boersma & C. L. Meunier, 2021. Environmental impacts on single-cell variation within a ubiquitous diatom: The role of growth rate. PloS ONE 16: e0251213. https://doi.org/10.1371/journal.pone.0251213. Guillard, R. R., 1975. Culture of phytoplankton for feeding marine invertebrates Culture of marine invertebrate animals. Springer, 29–60. https://doi.org/10.1007/978-1-4615-8714-9_3. Guillard, R. R. & J. H. Ryther, 1962. Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Canadian Journal of Microbiology 8: 229–239. https://doi.org/10.1139/m62-029. Hantzsche, F. M. & M. Boersma, 2010. Dietary-induced responses in the phagotrophic flagellate Oxyrrhis marina. Marine Biology 157: 1641–1651. https://doi.org/10.1007/s00227-010-1437-1. He, L., X. Han & Z. Yu, 2014. A rare Phaeodactylum tricornutum cruciform morphotype: culture conditions, transformation and unique fatty acid characteristics. PloS ONE 9: e93922. https://doi.org/10.1371/journal.pone.0093922. Hillebrand, H. & B. Matthiessen, 2009. Biodiversity in a complex world: consolidation and progress in functional biodiversity research. Ecology Letters 12: 1405–1419. https://doi.org/10.1111/j.1461-0248.2009.01388.x. Hillebrand, H., G. Steinert, M. Boersma, A. Malzahn, C. L. Meunier, C. Plum & R. Ptacnik, 2013. Goldman revisited: Faster-growing phytoplankton has lower N: P and lower stoichiometric flexibility. Limnology and Oceanography 58: 2076–2088. https://doi.org/10.4319/lo.2013.58.6.2076. Isanta-Navarro, J., C. Prater, L. M. Peoples, I. Loladze, T. Phan, P. D. Jeyasingh, M. J. Church, Y. Kuang & J. J. Elser, 2022. Revisiting the growth rate hypothesis: Towards a holistic stoichiometric understanding of growth. Ecology Letters 25: 2324–2339. https://doi.org/10.1111/ele.14096. Klausmeier, C. A., E. Litchman & S. A. Levin, 2004. Phytoplankton growth and stoichiometry under multiple nutrient limitation. Limnology and Oceanography 49: 1463–1470. https://doi.org/10.4319/lo.2004.49.4_part_2.1463. Klein, C., P. Claquin, A. Pannard, C. Napoléon, B. Le Roy & B. Véron, 2011. Dynamics of soluble extracellular polymeric substances and transparent exopolymer particle pools in coastal ecosystems. Marine Ecology Progress Series 427: 13–27. https://doi.org/10.3354/meps09049. Kremp, A., A. Godhe, J. Egardt, S. Dupont, S. Suikkanen, S. Casabianca & A. Penna, 2012. Intraspecific variability in the response of bloom-forming marine microalgae to changed climate conditions. Ecology and Evolution 2: 1195–1207. https://doi.org/10.1002/ece3.245. Litchman, E. & C. A. Klausmeier, 2008. Trait-based community ecology of phytoplankton. Annual Review of Ecology, Evolution, and Systematics 39: 615–639. https://doi.org/10.1146/annurev.ecolsys.39.110707.173549. Litchman, E., C. A. Klausmeier, O. M. Schofield & P. G. Falkowski, 2007. The role of functional traits and trade-offs in structuring phytoplankton communities: scaling from cellular to ecosystem level. Ecology Letters 10: 1170–1181. https://doi.org/10.1111/j.1461-0248.2007.01117.x. Loladze, I. & J. J. Elser, 2011. The origins of the Redfield nitrogen-to-phosphorus ratio are in a homoeostatic protein-to-rRNA ratio. Ecology Letters 14: 244–250. https://doi.org/10.1111/j.1461-0248.2010.01577.x. Lønborg, C., M. Middelboe & C. P. Brussaard, 2013. Viral lysis of Micromonas pusilla: impacts on dissolved organic matter production and composition. Biogeochemistry 116: 231–240. https://doi.org/10.1007/s10533-013-9853-1. Maat, D. S. & C. P. Brussaard, 2016. Both phosphorus-and nitrogen limitation constrain viral proliferation in marine phytoplankton. Aquatic Microbial Ecology 77: 87–97. https://doi.org/10.3354/ame01791. Maat, D. S., K. J. Crawfurd, K. R. Timmermans & C. P. Brussaard, 2014. Elevated CO2 and phosphate limitation favor Micromonas pusilla through stimulated growth and reduced viral impact. Applied and Environmental Microbiology 80: 3119–3127. https://doi.org/10.1128/AEM.03639-13. Malzahn, A. M., N. Aberle, C. Clemmesen & M. Boersma, 2007. Nutrient limitation of primary producers affects planktivorous fish condition. Limnology and Oceanography 52: 2062–2071. https://doi.org/10.4319/lo.2007.52.5.2062. Malzahn, A. M. & M. Boersma, 2012. Effects of poor food quality on copepod growth are dose dependent and non-reversible. Oikos 121: 1408–1416. https://doi.org/10.1111/j.1600-0706.2011.20186.x. Marie, D., N. Simon & D. Vaulot, 2005. Phytoplankton cell counting by flow cytometry. Algal Culturing Techniques 1: 253–267. Martino, A. D., A. Meichenin, J. Shi, K. Pan & C. Bowler, 2007. Genetic and phenotypic characterization of Phaeodactylum tricornutum (Bacillariophyceae) accessions 1. Journal of Phycology 43: 992–1009. https://doi.org/10.1111/j.1529-8817.2007.00384.x. Martiny, A. C., G. I. Hagstrom, T. DeVries, R. T. Letscher, G. L. Britten, C. A. Garcia, E. Galbraith, D. Karl, S. A. Levin & M. W. Lomas, 2022. Marine phytoplankton resilience may moderate oligotrophic ecosystem responses and biogeochemical feedbacks to climate change. Limnology and Oceanography 67: S378–S389. https://doi.org/10.1002/lno.12029. Massie, T. M., B. Blasius, G. Weithoff, U. Gaedke & G. F. Fussmann, 2010. Cycles, phase synchronization, and entrainment in single-species phytoplankton populations. Proceedings of the National Academy of Sciences 107: 4236–4241. https://doi.org/10.1073/pnas.0908725107. McBeain, K. A. & K. H. Halsey, 2018. Altering phytoplankton growth rates changes their value as food for microzooplankton grazers. Aquatic Microbial Ecology 82: 19–29. https://doi.org/10.3354/ame01880. McGregor, G. B. & B. C. Sendall, 2021. True branching and phenotypic plasticity in the planktonic cyanobacterium Dolichospermum brachiatum sp. nov. (Nostocales, Aphanizomenonaceae), from south-eastern Australia. Phytotaxa 491: 93–114. https://doi.org/10.11646/phytotaxa.491.2.1. Meunier, C. L., F. M. Hantzsche, A. Ö. Cunha-Dupont, J. Haafke, B. Oppermann, A. M. Malzahn & M. Boersma, 2012. Intraspecific selectivity, compensatory feeding and flexible homeostasis in the phagotrophic flagellate Oxyrrhis marina: three ways to handle food quality fluctuations. Hydrobiologia 680: 53–62. https://doi.org/10.1007/s10750-011-0900-4. Moore, J. K., W. Fu, F. Primeau, G. L. Britten, K. Lindsay, M. Long, S. C. Doney, N. Mahowald, F. Hoffman & J. T. Randerson, 2018. Sustained climate warming drives declining marine biological productivity. Science 359: 1139–1143. https://doi.org/10.1126/science.aao6379. Moorthi, S. D., J. A. Schmitt, A. Ryabov, I. Tsakalakis, B. Blasius, L. Prelle, M. Tiedemann & D. Hodapp, 2016. Unifying ecological stoichiometry and metabolic theory to predict production and trophic transfer in a marine planktonic food web. Philosophical Transactions of the Royal Society b: Biological Sciences 371: 20150270. https://doi.org/10.1098/rstb.2015.0270. Peñuelas, J., B. Poulter, J. Sardans, P. Ciais, M. Van Der Velde, L. Bopp, O. Boucher, Y. Godderis, P. Hinsinger & J. Llusia, 2013. Human-induced nitrogen–phosphorus imbalances alter natural and managed ecosystems across the globe. Nature Communications 4: 1–10. https://doi.org/10.1038/ncomms3934. Peñuelas, J., J. Sardans, A. Rivas-ubach & I. A. Janssens, 2012. The human-induced imbalance between C, N and P in Earth’s life system. Global Change Biology 18: 3–6. https://doi.org/10.1111/j.1365-2486.2011.02568.x. Plum, C. & H. Hillebrand, 2019. Multiple zooplankton species alter the stoichiometric interactions between producer and consumer levels. Marine Biology 166: 163. https://doi.org/10.1007/s00227-019-3609-y. Ptacnik, R., A. G. Solimini, T. Andersen, T. Tamminen, P. Brettum, L. Lepistö, E. Willén & S. Rekolainen, 2008. Diversity predicts stability and resource use efficiency in natural phytoplankton communities. Proceedings of the National Academy of Sciences 105: 5134–5138. https://doi.org/10.1073/pnas.0708328105. Redfield, A. C., 1958. The biological control of chemical factors in the environment. American Scientist 46: 230A-A221. Reusch, T. B. & P. W. Boyd, 2013. Experimental evolution meets marine phytoplankton. Evolution 67: 1849–1859. https://doi.org/10.1111/evo.12035. Rhee, G. Y., 1978. Effects of N: P atomic ratios and nitrate limitation on algal growth, cell composition, and nitrate uptake. Limnology and Oceanography 23: 10–25. https://doi.org/10.4319/lo.1978.23.1.0010. Rhee, G. Y. & I. J. Gotham, 1980. Optimum N: P ratios and coexistence of planktonic algae. Journal of Phycology 16: 486–489. https://doi.org/10.1111/j.1529-8817.1980.tb03065.x. Rogers, C. E., C. Navas, K. F. Bush & J. Dyble Bressie, 2012. A novel, transportable flow cytometer facilitates algal quantification in cultures and environmental samples. Technical Bulletin, BD Biosciences: https://www.bdbiosciences.com/content/dam/bdb/marketing-documents/Accuri-TB-Algal-Quantifi-in-Cultures-and-Env-Samples.pdf. Song, Z., G. J. Lye & B. M. Parker, 2020. Morphological and biochemical changes in Phaeodactylum tricornutum triggered by culture media: Implications for industrial exploitation. Algal Research 47: 101822. https://doi.org/10.1016/j.algal.2020.101822. Sterner, R. W. & J. J. Elser, 2002. Ecological stoichiometry: the biology of elements from molecules to the biosphere, Princeton University Press, Princeton, New Jersey, USA: https://doi.org/10.1515/9781400885695. Striebel, M., S. Schabhüttl, D. Hodapp, P. Hingsamer & H. Hillebrand, 2016. Phytoplankton responses to temperature increases are constrained by abiotic conditions and community composition. Oecologia 182: 815–827. https://doi.org/10.1007/s00442-016-3693-3. Thébault, E. & M. Loreau, 2005. Trophic interactions and the relationship between species diversity and ecosystem stability. The American Naturalist 166: E95–E114. https://doi.org/10.1086/444403. Thébault, E. & M. Loreau, 2006. The relationship between biodiversity and ecosystem functioning in food webs. Ecological Research 21: 17–25. https://doi.org/10.1007/s11284-005-0127-9. Thingstad, T. F., L. Øvreås, J. K. Egge, T. Løvdal & M. Heldal, 2005. Use of non-limiting substrates to increase size; a generic strategy to simultaneously optimize uptake and minimize predation in pelagic osmotrophs? Ecology Letters 8: 675–682. https://doi.org/10.1111/j.1461-0248.2005.00768.x. Thrane, J. E., D. O. Hessen & T. Andersen, 2016. The impact of irradiance on optimal and cellular nitrogen to phosphorus ratios in phytoplankton. Ecology Letters 19: 880–888. https://doi.org/10.1111/ele.12623. Utermöhl, H., 1958. Zur vervollkommnung der quantitativen phytoplankton-methodik: Mit 1 Tabelle und 15 abbildungen im Text und auf 1 Tafel. Internationale Vereinigung Für Theoretische Und Angewandte Limnologie: Mitteilungen 9: 1–38. Vallina, S. M., P. Cermeno, S. Dutkiewicz, M. Loreau & J. M. Montoya, 2017. Phytoplankton functional diversity increases ecosystem productivity and stability. Ecological Modelling 361: 184–196. https://doi.org/10.1016/j.ecolmodel.2017.06.020. Volcani, B., 1981. Cell wall formation in diatoms: morphogenesis and biochemistry Silicon and siliceous structures in biological systems. Springer, 157–200. Weaver, W. & C. Shannon, (1963). The mathematical theory of communication University of Illinois Press Urbana. West-Eberhard, M. J., 2003. Developmental plasticity and evolution, Oxford University Press: Xue, J., Y.-F. Niu, T. Huang, W.-D. Yang, J.-S. Liu & H.-Y. Li, 2015. Genetic improvement of the microalga Phaeodactylum tricornutum for boosting neutral lipid accumulation. Metabolic Engineering 27: 1–9. https://doi.org/10.1016/j.ymben.2014.10.002.