Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase

Nature - Tập 415 Số 6869 - Trang 339-343 - 2002
Yasuhiko Minokoshi1, Young‐Bum Kim1, Odile D. Peroni1, Lee G. D. Fryer2, Corinna Müller1, David Carling2, Barbara B. Kahn1
1Division of Endocrinology, Beth Israel Deaconess Medical Center and Department of Medicine, Diabetes and Metabolism, Harvard Medical School, Boston, USA
2The Cellular Stress Group, MRC Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital, London, UK

Tóm tắt

Từ khóa


Tài liệu tham khảo

Friedman, J. M. & Halaas, J. L. Leptin and the regulation of body weight in mammals. Nature 395, 763–770 (1998).

Muoio, D. M. et al. Leptin directly alters lipid partitioning in skeletal muscle. Diabetes 46, 1360–1363 (1997).

Kamohara, S., Burcelin, R., Halaas, J. L., Friedman, J. M. & Charron, M. J. Acute stimulation of glucose metabolism in mice by leptin treatment. Nature 389, 374–377 (1997).

Minokoshi, Y., Haque, M. S. & Shimazu, T. Microinjection of leptin into the ventromedial hypothalamus increases glucose uptake in peripheral tissues in rats. Diabetes 48, 287–291 (1999).

Unger, R. H., Zhou, Y.-T. & Orci, L. Regulation of fatty acid homeostasis in cells: novel role of leptin. Proc. Natl Acad. Sci. USA 96, 2327–2332 (1999).

Hardie D. G., Carling, D. & Carlson, M. The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Ann. Rev. Biochem. 67, 821–855 (1998).

Winder, W. W. & Hardie, D. G. AMP-activated protein kinase, a metabolic master switch: possible roles in type 2 diabetes. Am. J. Physiol. 277, E1–E10 (1999).

Kahn, B. B. & Flier, J. S. Obesity and insulin resistance. J. Clin. Invest. 106, 473–481 (2000).

Ruderman, N. B., Saha, A. K., Vavvas, D. & Witters, L. A. Malonyl-CoA, fuel sensing, and insulin resistance. Am. J. Physiol. 276, E1–E18 (1999).

Lee, Y. et al. Liporegulation in diet-induced obesity. The antisteatotic role of hyperleptinemia. J. Biol. Chem. 276, 5629–5635 (2001).

Schwartz, M. W., Woods, S. C., Porte, D. Jr, Seeley, R. J. & Baskin, D. G. Central nervous system control of food intake. Nature 404, 661–671 (2000).

Abu-Elheiga, L., Matzuk, M. M., Abo-Hashema, K. A. H. & Wakil, S. J. Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2. Science 291, 2613–2616 (2001).

Stein, S. C., Woods, A., Jones, N. A., Davison, M. D. & Carling, D. The regulation of AMP-activated protein kinase by phosphorylation. Biochem. J. 345, 437–443 (2000).

Ponticos, M. et al. Dual regulation of the AMP-activated protein kinase provides a novel mechanism for the control of creatine kinase in skeletal muscle. EMBO J. 17, 1688–1699 (1998).

Higaki, Y., Hirshman, M. F., Fujii, N. & Goodyear, L. J. Nitric oxide increases glucose uptake through a mechanism that is distinct from the insulin and contraction pathways in rat skeletal muscle. Diabetes 50, 241–247 (2001).

Woods, A. et al. Characterization of the role of AMP-activated protein kinase in the regulation of glucose-activated gene expression using constitutively active and dominant negative forms of the kinase. Mol. Cell. Biol. 20, 6704–6711 (2000).

Jat, P. S. et al. Direct derivation of conditionally immortal cell lines from an H-2Kb-ts-A58 transgenic mouse. Proc. Natl. Acad. Sci. USA 88, 5096–5100 (1991).

Fryer, L. G. D. et al. Activation of glucose transport by AMP-activated protein kinase via stimulation of nitric oxide synthase. Diabetes 49, 1978–1985 (1999).

Haynes, W. G., Morgan, D. A., Walsh, S. A., Mark, A. L. & Sivitz, W. I. Receptor-mediated regional sympathetic nerve activation by leptin. J. Clin. Invest. 100, 270–278 (1997).

Kishi, K. et al. AMP-activated protein kinase is activated by the stimulations of Gq-coupled receptors. Biochem. Biophys. Res. Commun. 276, 16–22 (2000).

Martin, W. H., Tolley, T. K. & Saffitz, J. E. Autoradiogaraphic delineation of skeletal muscle α1-adrenergic receptor distribution. Am. J. Physiol. 259, H1402–H1408 (1990).

Akaike, N. Sodium pump in skeletal muscle: central nervous system-induced suppression by α-adrenoreceptors. Science 213, 1252–1254 (1981).

Stafford I. L. & Jacobs, B. L. Noradrenergic modulation of the masseteric reflex in behaving cats. I. Pharmacological studies. J. Neurosci. 10, 91–98 (1990).

Woods, A., Salt, I., Scott, J., Hardie, D. G. & Carling, D. The α1 and α2 isoforms of the AMP-activated protein kinase have similar activities in rat liver but exhibit differences in substrate specificity in vitro. FEBS Lett. 397, 347–351 (1996).

Hayashi, T. et al. Metabolic stress and altered glucose transport. Activation of AMP-activated protein kinase as a unifying coupling mechanism. Diabetes 49, 527–531 (2000).

Goodwin, G. W. & Taegtmeyer, H. Regulation of fatty acid oxidation of the heart by MCD and ACC during contractile stimulation. Am. J. Physiol. 277, E772–E777 (1999).

Oakes, N. D. et al. Development and initial evaluation of a novel method for assessing tissue-specific plasma free fatty acid utilization in vivo using (R)-2-bromopalmitate tracer. J. Lipid. Res. 40, 1155–1169 (1999).

Corton, J. M., Gillespie, J. G. & Hardie, D. G. Role of the AMP-activated protein kinase in the cellular stress response. Curr. Biol. 4, 315–324 (1994).

Vavvas, D. et al. Contraction-induced changes in acetyl-CoA carboxylase and 5′-AMP-activated kinase in skeletal muscle. J. Biol. Chem. 272, 13255–13261 (1997).