Length functions exponentially distorted on subgroups of complex Lie groups
Tóm tắt
We introduce a notion of a length function exponentially distorted on a (compactly generated) subgroup of a locally compact group. We prove that for a connected linear complex Lie group there is a maximum equivalence class of length functions exponentially distorted on a normal integral subgroup lying between the exponential and nilpotent radicals. Moreover, a function in this class admits an asymptotic decomposition similar to that previously found by the author for word length functions, i.e., in the case of exponential radical (J Lie Theory 29:4, 1045–1070, 2019). In the general case we use auxiliary length functions constructed via holomorphic homomorphisms to Banach PI-algebras.
Tài liệu tham khảo
Aljadeff, E., Giambruno, A., Procesi, C., Regev, A.: Rings With Polynomial Identities and Finite Dimensional Representations of Algebras. American Mathematical Society Colloquium Publications, vol. 66. American Mathematical Society, Providence (2020)
Akbarov, S.S.: Holomorphic functions of exponential type and duality for Stein groups with algebraic connected component of identity. J. Math. Sci. (N.Y.) 162(4), 459–586 (2009)
Aristov, O.Yu.: Arens–Michael envelopes of nilpotent Lie algebras, functions of exponential type, and homological epimorphisms. Trans. Moscow Math. Soc. 81, 97–114 (2020)
Aristov, O.Yu.: Holomorphic functions of exponential type on connected complex Lie groups. J. Lie Theory 29(4), 1045–1070 (2019)
Aristov, O.Yu.: Holomorphically finitely generated Hopf algebras and quantum Lie groups (2020). arXiv:2006.12175
Aristov, O.Yu.: On holomorphic reflexivity conditions for complex Lie groups. Proc. Edinburgh Math. Soc. 64(4), 800–821 (2021)
Aristov, O.Yu.: Decomposition of the algebra of analytic functionals on a connected complex Lie group and its completions into iterated analytic smash products (2022). arXiv:2209.04192
Aristov, O.Yu.: The structure of the linearizer of a connected complex Lie group. Sib. Math. J. 64(2), 287–290 (2023)
Aristov, O.Yu.: When a completion of the universal enveloping algebra is a Banach PI-algebra? Bull. Aust. Math. Soc. 107(3), 493–501 (2023)
Aristov, O.Yu.: Analytic functionals on complex Lie groups, smash products and resolutions. Preprint (2022) (in Russian)
Bourbaki, N.: Éléments d Mathématique: Groupes et Algebres de Lie. Part I: Chapters 1–3. Hermann, Paris (1975)
Bourbaki, N.: Lie Groups and Lie Algebras. Chapters 7–9. Elements of Mathematics (Berlin). Springer, Berlin (2005)
de Cornulier, Y.: Dimension of asymptotic cones of Lie groups. J. Topology 1(2), 342–361 (2008)
Dixmier, J.: Enveloping Algebras. North-Holland Mathematical Library, vol. 14. North-Holland, Amsterdam (1977)
Goze, M., Khakimdjanov, Y.: Nilpotent Lie Algebras. Mathematics and its Applications, vol. 361. Kluwer, Dordrecht (1996)
Hilgert, J., Neeb, K.-H.: Structure and Geometry of Lie Groups. Springer Monographs in Mathematics. Springer, New York (2012)
Hochschild, G.: The Structure of Lie Groups. Holden-Day, San Francisco (1965)
Kanel-Belov, A., Karasik, Y., Rowen, L.H.: Computational Aspects of Polynomial Identities. Vol. I. Kemer’s Theorems. 2nd edn. Monographs and Research Notes in Mathematics. CRC Press, Boca Raton (2016)
Krupnik, N.Ya.: Banach Algebras With Symbol and Singular Integral Operators. Operator Theory: Advances and Applications, vol. 26. Birkhäuser, Basel (1987)
Lee, D.H.: The Structure of Complex Lie Groups. CRC Research Notes in Mathematics, vol. 429. CRC, Boca Raton (2002)
Müller, V.: Nil, nilpotent and PI-algebras. In: Zemánek, J. (ed.) Functional Analysis and Operator Theory. Banach Center Publications, vol. 30, pp. 259–265. PWN, Warsaw (1994)
Neeb, K.-H.: Infinite-Dimensional Lie Groups, 3rd cycle. Monastir (Tunisie) (2005). https://cel.hal.science/cel-00391789/document
Onishchik, A.L., Vinberg, E.B.: Lie Groups and Lie Algebras III: Structure of Lie Groups and Lie Algebras. Encyclopaedia of Mathematical Sciences, vol. 41. Springer, Berlin (1994). Original Russian edition: VINITI, Moscow (1990)
Osin, D.V.: Exponential radicals of solvable Lie groups. J. Algebra 248(2), 790–805 (2002)