Length distributions of edges in planar stationary and isotropic STIT tessellations
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ambartzumian, R.V. (1990). Factorization calculus and geometric probability. Cambridge University Press, Cambridge.
Mackisack, M.S. and Miles, R.E. (1996). Homogeneous rectangular tessellations. Adv. Appl. Prob. (SGSA) 28, 993–1013.
Mathéron, G. (1975). Random sets and integral geometry. John Wiley & Sons, New York, London.
Mecke, J. (1980). Palm methods for stationary random mosaics. In Combinatorial Principles in Stochastic Geometry (ed. R.V. Ambartzumjan). Armenian Academy of Sciences Publ., Erevan, 124–132.
Mecke, J. (1984). Parametric representation of mean values for stationary random mosaics. Math. Operationsf. Statist., Ser. Statistics 15, 437–442.
Mecke, J., Schneider, R. Stoyan, D., Weil, W. (1990). Stochastische Geometrie. Birkhäuser, Basel, Boston, Berlin.
Nagel, W. and Weiss, V. (2003). Limits of sequences of stationary planar tessellations. Adv. Appl. Prob. (SGSA) 35, 123–138.
Nagel, W. and Weiss, V. (2004). Crack STIT tessellations — existence and uniqueness of tessellations that are stable with respect to iteration. Izvestija Akademii Nauk Armenii. Matematika, [Journal of Contemporary Math. Anal. (Armenian Academy of Sciences)], 39, 84–114.
Nagel, W. and Weiss, V. (2005). The crack tessellations — characterization of the stationary random tessellations which are stable with respect to iteration. Adv. Appl. Prob. (SGSA) 37, 859–883.
Nagel, W. and Weiß, V. Some geometric features of Crack STIT tessellations in the plane. submitted to Rendiconti del Circolo Mathematico di Plaermo.
Stoyan, D., Kendall, W. S., and Mecke, J. (1995). Stochastic Geometry and its Applications. 2nd edn. Wiley, Chichester.