Length distributions of edges in planar stationary and isotropic STIT tessellations

Journal of Contemporary Mathematical Analysis - Tập 42 Số 1 - Trang 28-43 - 2007
Joseph Mecke1, Werner Nagel1, V. Weiß2
1Friedrich-Schiller Universitat, Jena, Germany
2Fachhochschule Jena, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ambartzumian, R.V. (1990). Factorization calculus and geometric probability. Cambridge University Press, Cambridge.

Mackisack, M.S. and Miles, R.E. (1996). Homogeneous rectangular tessellations. Adv. Appl. Prob. (SGSA) 28, 993–1013.

Mathéron, G. (1975). Random sets and integral geometry. John Wiley & Sons, New York, London.

Mecke, J. (1975). Invarianzeigenschaften allgemeiner Palmsche Maße. Math. Nachr. 65, 335–344.

Mecke, J. (1980). Palm methods for stationary random mosaics. In Combinatorial Principles in Stochastic Geometry (ed. R.V. Ambartzumjan). Armenian Academy of Sciences Publ., Erevan, 124–132.

Mecke, J. (1984). Parametric representation of mean values for stationary random mosaics. Math. Operationsf. Statist., Ser. Statistics 15, 437–442.

Mecke, J., Schneider, R. Stoyan, D., Weil, W. (1990). Stochastische Geometrie. Birkhäuser, Basel, Boston, Berlin.

Møller, J. (1989). Random tessellations in ℝd. Adv. Appl. Prob. 24, 37–73.

Nagel, W. and Weiss, V. (2003). Limits of sequences of stationary planar tessellations. Adv. Appl. Prob. (SGSA) 35, 123–138.

Nagel, W. and Weiss, V. (2004). Crack STIT tessellations — existence and uniqueness of tessellations that are stable with respect to iteration. Izvestija Akademii Nauk Armenii. Matematika, [Journal of Contemporary Math. Anal. (Armenian Academy of Sciences)], 39, 84–114.

Nagel, W. and Weiss, V. (2005). The crack tessellations — characterization of the stationary random tessellations which are stable with respect to iteration. Adv. Appl. Prob. (SGSA) 37, 859–883.

Nagel, W. and Weiß, V. Some geometric features of Crack STIT tessellations in the plane. submitted to Rendiconti del Circolo Mathematico di Plaermo.

Schneider, R. and Weil, W. (2000). Stochastische Geometrie. B.G. Teubner, Stuttgart, Leipzig.

Stoyan, D., Kendall, W. S., and Mecke, J. (1995). Stochastic Geometry and its Applications. 2nd edn. Wiley, Chichester.