Các hỗn hợp cây trồng giống đậu có thể khắc phục những đánh đổi giữa đầu vào C, sự cạn kiệt N khoáng trong đất và hiệu ứng năng suất còn lại

Agriculture, Ecosystems & Environment - Tập 349 - Trang 108408 - 2023
Jim Rasmussen1, Lars Stoumann Jensen2, Jakob Magid2, Kristian Thorup-Kristensen2, Michelle Karlsson2, Maria Skovgaard Andersen2, Tine Engedal2, Veronika Hansen2
1Department of Agroecology, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark
2Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark

Tóm tắt

Cây phủ có thể góp phần giảm thiểu biến đổi khí hậu thông qua việc gia tăng khả năng lưu trữ carbon dioxide trong không khí vào carbon hữu cơ trong đất. Tuy nhiên, rất ít nghiên cứu ước tính tổng đầu vào carbon (C) cho đất, tức là từ cả vật liệu thực vật (thân và rễ) cùng với sự lắng đọng phyllo và rhizodeposition. Việc chọn lựa loài cây phủ cần xem xét nhiều mục tiêu, chẳng hạn như đầu vào C cho đất, giảm thiểu rửa trôi nitrate và các tác động tồn dư tích cực lên cây trồng chính ở vụ sau. Tuy nhiên, có thể xảy ra sự đánh đổi giữa các mục tiêu này. Mục tiêu của nghiên cứu này là điều tra hiệu suất của các loài cây phủ mùa đông như lúa mạch mùa đông, đậu tóc và củ cải dầu, đồng thời đánh giá khả năng của các hỗn hợp để vượt qua các đánh đổi tiềm năng. Một thử nghiệm thực địa với thiết kế thí nghiệm chia lô ngẫu nhiên đã được thực hiện để so sánh các biện pháp cây phủ và một lô kiểm soát được làm sạch cỏ dưới điều kiện ưa thích và không ưa thích nitơ (N) trong đất. Việc ghi nhãn đa xung với 14C-CO2 đã được thực hiện để theo dõi sự lắng đọng C từ cây phủ. Nồng độ N khoáng trong đất đã được đo đến độ sâu 1,5 m vào mùa thu, cũng như năng suất hạt và N trong vụ lúa mạch xuân tiếp theo. Các loài cây phủ tích lũy giữa 1250 và 2580 kg C ha−1, với tổng đầu vào C (từ thân, rễ và các lắng đọng phyllo và rhizodeposits) cao hơn một cách đáng kể ở các hỗn hợp so với các loài cây thuần khiết cả đậu tóc và củ cải, trong khi kết quả cho lúa mạch nằm ở giữa. Số lượng C mất qua phyllo và rhizodeposition (qClvPR) cho thấy có mối tương quan dương đáng kể với C rễ và cao nhất cho các hỗn hợp và lúa mạch. Tương quan ClvPR tương đối dao động từ 7% đến 14% tổng C từ cây phủ và có xu hướng giảm dưới điều kiện N trong đất cao hơn. Tất cả các biện pháp cây phủ đều có khả năng làm giảm N khoáng trong đất (0–1,5 m), với củ cải cho thấy tiềm năng giảm thiểu rửa trôi N cao nhất. Dù có sự khác biệt đáng kể về tổng lượng N hấp thụ của cây phủ và tỷ lệ C:N, nhưng không có sự khác biệt đáng kể nào được quan sát trong năng suất hạt hoặc N của cây trồng chính tiếp theo. Các hỗn hợp cho thấy tổng đầu vào C cao nhất và nói chung có khả năng cạn kiệt N khoáng cao hơn hoặc tương tự so với trung bình của các loại cây thuần khiết, cho thấy rằng các hỗn hợp cây phủ cung cấp một phương pháp thực tế để vượt qua những đánh đổi giữa các chức năng của hệ sinh thái.

Từ khóa

#Cover crops #Carbon input #Rhizodeposition #Soil mineral nitrogen #Legume-non-legume mixtures #Legumes #Leaching reduction #Yield effects

Tài liệu tham khảo

Angst et al., 2021 G. Angst K.E. Mueller K.G.J. Nierop M.J. Simpson Plant- or microbial-derived? a review on the molecular composition of stabilized soil organic matter Soil Biol. Biochem. 156 2021 108189 10.1016/j.soilbio.2021.108189 Angst, G., Mueller, K.E., Nierop, K.G.J., Simpson, M.J., 2021. Plant- or microbial-derived? A review on the molecular composition of stabilized soil organic matter. Soil Biol. Biochem. 156, 108189. https://doi.org/10.1016/j.soilbio.2021.108189 Austin et al., 2017 E.E. Austin K. Wickings M.D. McDaniel G.P. Robertson A.S. Grandy Cover crop root contributions to soil carbon in a no-till corn bioenergy cropping system GCB Bioenergy 9 2017 1252 1263 10.1111/gcbb.12428 Austin, E.E., Wickings, K., McDaniel, M.D., Robertson, G.P., Grandy, A.S., 2017. Cover crop root contributions to soil carbon in a no-till corn bioenergy cropping system. GCB Bioenergy 9, 1252–1263. https://doi.org/10.1111/gcbb.12428 Blanco-Canqui et al., 2015 Humberto Blanco-Canqui T.M. Shaver J.L. Lindquist C.A. Shapiro R.W. Elmore C.A. Francis G.W. Hergert Cover Crops Ecosyst. Serv.: Insights Stud. Temp. Soils Agron. J. 107 2015 2449 2474 10.2134/agronj15.0086 Blanco-Canqui, Humberto, Shaver, T.M., Lindquist, J.L., Shapiro, C.A., Elmore, R.W., Francis, C.A., Hergert, G.W., 2015. Cover Crops and Ecosystem Services: Insights from Studies in Temperate Soils. Agron. J. 107, 2449–2474. https://doi.org/doi:10.2134/agronj15.0086 Blesh, 2018 J. Blesh Functional traits in cover crop mixtures: Biological nitrogen fixation and multifunctionality. J. Appl. Ecol. 55 2018 38 48 10.1111/1365-2664.13011 Blesh, J., 2018. Functional traits in cover crop mixtures: Biological nitrogen fixation and multifunctionality. J. Appl. Ecol. 55, 38–48. https://doi.org/10.1111/1365–2664.13011 Bowsher et al., 2018 A.W. Bowsher S. Evans L.K. Tiemann M.L. Friesen Effects of soil nitrogen availability on rhizodeposition in plants: a review Plant Soil 423 2018 59 85 10.1007/s11104-017-3497-1 Bowsher, A.W., Evans, S., Tiemann, L.K., Friesen, M.L., 2018. Effects of soil nitrogen availability on rhizodeposition in plants: a review. Plant Soil 423, 59–85. https://doi.org/10.1007/s11104–017-3497–1 Castellano et al., 2015 M.J. Castellano K.E. Mueller D.C. Olk J.E. Sawyer J. Six Integrating plant litter quality, soil organic matter stabilization, and the carbon saturation concept Glob. Chang. Biol. 21 2015 3200 3209 10.1111/gcb.12982 Castellano, M.J., Mueller, K.E., Olk, D.C., Sawyer, J.E., Six, J., 2015. Integrating plant litter quality, soil organic matter stabilization, and the carbon saturation concept. Glob. Chang. Biol. 21, 3200–3209. https://doi.org/10.1111/gcb.12982 Chirinda et al., 2012 N. Chirinda J.E. Olesen J.R. Porter Root carbon input in organic and inorganic fertilizer-based systems Plant Soil 359 2012 321 333 10.1007/s11104-012-1208-5 Chirinda, N., Olesen, J.E., Porter, J.R., 2012. Root carbon input in organic and inorganic fertilizer-based systems. Plant Soil 359, 321–333. https://doi.org/10.1007/s11104–012-1208–5 Constantin et al., 2010 J. Constantin B. Mary F. Laurent G. Aubrion A. Fontaine P. Kerveillant N. Beaudoin Effects of catch crops, no till and reduced nitrogen fertilization on nitrogen leaching and balance in three long-term experiments Agric. Ecosyst. Environ. 135 2010 268 278 10.1016/j.agee.2009.10.005 Constantin, J., Mary, B., Laurent, F., Aubrion, G., Fontaine, A., Kerveillant, P., Beaudoin, N., 2010. Effects of catch crops, no till and reduced nitrogen fertilization on nitrogen leaching and balance in three long-term experiments. Agric. Ecosyst. Environ. 135, 268–278. https://doi.org/10.1016/j.agee.2009.10.005 Cotrufo et al., 2013 M.F. Cotrufo M.D. Wallenstein C.M. Boot K. Denef E. Paul The microbial efficiency-matrix stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter? Glob. Chang Biol 19 2013 988 995 10.1111/gcb.12113 Cotrufo, M.F., Wallenstein, M.D., Boot, C.M., Denef, K., Paul, E., 2013. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter? Glob. Chang. Biol. 19, 988–995. https://doi.org/10.1111/gcb.12113 Cotrufo et al., 2019 M.F. Cotrufo M.G. Ranalli M.L. Haddix J. Six E. Lugato Soil carbon storage informed by particulate and mineral-associated organic matter Nat. Geosci. 12 2019 989 994 10.1038/s41561-019-0484-6 Cotrufo, M.F., Ranalli, M.G., Haddix, M.L., Six, J., Lugato, E., 2019. Soil carbon storage informed by particulate and mineral-associated organic matter. Nat. Geosci. 12, 989–994. https://doi.org/10.1038/s41561–019-0484–6 Cottney et al., 2022 P. Cottney L. Black P. Williams E. White How Cover Crop Sowing Date Impacts Upon Their Growth, Nutrient Assimilation And The Yield Of The Subsequent Commercial Crop Agronomy 2022 12 10.3390/agronomy12020369 Cottney, P., Black, L., Williams, P., White, E., 2022. How Cover Crop Sowing Date Impacts upon Their Growth, Nutrient Assimilation and the Yield of the Subsequent Commercial Crop. Agronomy 12. https://doi.org/10.3390/agronomy12020369 Couëdel et al., 2018 A. Couëdel L. Alletto H. Tribouillois É. Justes Cover crop crucifer-legume mixtures provide effective nitrate catch crop and nitrogen green manure ecosystem services Agric. Ecosyst. Environ. 254 2018 50 59 10.1016/j.agee.2017.11.017 Couëdel, A., Alletto, L., Tribouillois, H., Justes, É., 2018. Cover crop crucifer-legume mixtures provide effective nitrate catch crop and nitrogen green manure ecosystem services. Agric. Ecosyst. Environ. 254, 50–59. https://doi.org/10.1016/j.agee.2017.11.017 De Notaris et al., 2018 C. De Notaris J. Rasmussen P. Sørensen J.E. Olesen Nitrogen leaching: a crop rotation perspective on the effect of N surplus, field management and use of catch crops Agric. Ecosyst. Environ. 255 2018 1 11 10.1016/j.agee.2017.12.009 De Notaris, C., Rasmussen, J., Sørensen, P., Olesen, J.E., 2018. Nitrogen leaching: A crop rotation perspective on the effect of N surplus, field management and use of catch crops. Agric. Ecosyst. Environ. 255, 1–11. https://doi.org/10.1016/j.agee.2017.12.009 De Notaris et al., 2020 C. De Notaris J.E. Olesen P. Sørensen J. Rasmussen Input and mineralization of carbon and nitrogen in soil from legume-based cover crops Nutr. Cycl. Agroecosystems 116 2020 1 18 10.1007/s10705-019-10026-z De Notaris, C., Olesen, J.E., Sørensen, P., Rasmussen, J., 2020. Input and mineralization of carbon and nitrogen in soil from legume-based cover crops. Nutr. Cycl. Agroecosystems 116, 1–18. https://doi.org/10.1007/s10705–019-10026-z De Notaris et al., 2021 C. De Notaris E.Ø. Mortensen P. Sørensen J.E. Olesen J. Rasmussen Cover crop mixtures including legumes can self-regulate to optimize N2 fixation while reducing nitrate leaching Agric. Ecosyst. Environ. 2021 309 10.1016/j.agee.2020.107287 De Notaris, C., Mortensen, E.Ø., Sørensen, P., Olesen, J.E., Rasmussen, J., 2021. Cover crop mixtures including legumes can self-regulate to optimize N2 fixation while reducing nitrate leaching. Agric. Ecosyst. Environ. 309. https://doi.org/10.1016/j.agee.2020.107287 Doltra and Olesen, 2013 J. Doltra J.E. Olesen The role of catch crops in the ecological intensification of spring cereals in organic farming under Nordic climate Eur. J. Agron. 44 2013 98 108 10.1016/j.eja.2012.03.006 Doltra, J., Olesen, J.E., 2013. The role of catch crops in the ecological intensification of spring cereals in organic farming under Nordic climate. Eur. J. Agron. 44, 98–108. https://doi.org/10.1016/j.eja.2012.03.006 Elhakeem et al., 2021 A. Elhakeem L. Bastiaans S. Houben T. Couwenberg D. Makowski W. van der Werf Do cover crop mixtures give higher and more stable yields than pure stands? F. Crop. Res 2021 270 10.1016/j.fcr.2021.108217 Elhakeem, A., Bastiaans, L., Houben, S., Couwenberg, T., Makowski, D., van der Werf, W., 2021. Do cover crop mixtures give higher and more stable yields than pure stands? F. Crop. Res. 270. https://doi.org/10.1016/j.fcr.2021.108217 Farrar and Jones, 2000 J.F. Farrar D.L. Jones The control of carbon acquisition by roots N. Phytol. 147 2000 43 53 10.1046/j.1469-8137.2000.00688.x Farrar, J.F., Jones, D.L., 2000. The control of carbon acquisition by roots. New Phytol. 147, 43–53. https://doi.org/10.1046/j.1469–8137.2000.00688.x Finney and Kaye, 2017 D.M. Finney J.P. Kaye Functional diversity in cover crop polycultures increases multifunctionality of an agricultural system J. Appl. Ecol. 54 2017 509 517 10.1111/1365-2664.12765 Finney, D.M., Kaye, J.P., 2017. Functional diversity in cover crop polycultures increases multifunctionality of an agricultural system. J. Appl. Ecol. 54, 509–517. https://doi.org/10.1111/1365–2664.12765 Hansen et al., 2021 V. Hansen J. Eriksen L.S. Jensen K. Thorup-Kristensen J. Magid Towards integrated cover crop management: N, P and S release from aboveground and belowground residues Agric. Ecosyst. Environ. 2021 313 10.1016/j.agee.2021.107392 Hansen, V., Eriksen, J., Jensen, L.S., Thorup-Kristensen, K., Magid, J., 2021. Towards integrated cover crop management: N, P and S release from aboveground and belowground residues. Agric. Ecosyst. Environ. 313. https://doi.org/10.1016/j.agee.2021.107392 Hupe et al., 2019 A. Hupe H. Schulz C. Bruns T. Haase J. Heß J. Dyckmans R.G. Joergensen F. Wichern Get on your boots: estimating root biomass and rhizodeposition of peas under field conditions reveals the necessity of field experiments Plant Soil 443 2019 449 462 10.1007/s11104-019-04238-z Hupe, A., Schulz, H., Bruns, C., Haase, T., Heß, J., Dyckmans, J., Joergensen, R.G., Wichern, F., 2019. Get on your boots: estimating root biomass and rhizodeposition of peas under field conditions reveals the necessity of field experiments. Plant Soil 443, 449–462. https://doi.org/10.1007/s11104–019-04238-z Jensen et al., 2021 J.L. Jensen J. Eriksen I.K. Thomsen L.J. Munkholm B.T. Christensen Cereal straw incorporation and ryegrass cover crops: The path to equilibrium in soil carbon storage is short Eur. J. Soil Sci. 2021 1 10 10.1111/ejss.13173 Jensen, J.L., Eriksen, J., Thomsen, I.K., Munkholm, L.J., Christensen, B.T., 2021. Cereal straw incorporation and ryegrass cover crops: The path to equilibrium in soil carbon storage is short. Eur. J. Soil Sci. 1–10. https://doi.org/10.1111/ejss.13173 Jones et al., 2004 D.L. Jones A. Hodge Y. Kuzyakov Plant and mycorrhizal regulation of rhizodeposition N. Phytol. 163 2004 459 480 10.1111/j.1469-8137.2004.01130.x Jones, D.L., Hodge, A., Kuzyakov, Y., 2004. Plant and mycorrhizal regulation of rhizodeposition. New Phytol. 163, 459–480. https://doi.org/10.1111/j.1469–8137.2004.01130.x Kaye and Quemada, 2017 J.P. Kaye M. Quemada Using cover crops to mitigate and adapt to climate change. A review Agron. Sustain. Dev. 2017 37 10.1007/s13593-016-0410-x Kaye, J.P., Quemada, M., 2017. Using cover crops to mitigate and adapt to climate change. A review. Agron. Sustain. Dev. 37. https://doi.org/10.1007/s13593–016-0410-x Kuzyakov and Schneckenberger, 2004 Y. Kuzyakov K. Schneckenberger Review of estimation of plant rhizodeposition and their contribution to soil organic matter formation Arch. Agron. Soil Sci. 50 2004 115 132 10.1080/03650340310001627658 Kuzyakov, Y., Schneckenberger, K., 2004. Review of estimation of plant rhizodeposition and their contribution to soil organic matter formation. Arch. Agron. Soil Sci. 50, 115–132. https://doi.org/10.1080/03650340310001627658 Laine et al., 1993 P. Laine A. Ourry J. Macduff J. Boucaud J. Salette Kinetic parameters of nitrate uptake by different catch crop species: effects of low temperatures or previous nitrate starvation Physiol. Plant. 88 1993 85 92 10.1111/j.1399-3054.1993.tb01764.x Laine, P., Ourry, A., Macduff, J., Boucaud, J., Salette, J., 1993. Kinetic parameters of nitrate uptake by different catch crop species: effects of low temperatures or previous nitrate starvation. Physiol. Plant. 88, 85–92. https://doi.org/10.1111/j.1399–3054.1993.tb01764.x Lal, 2004 R. Lal Soil carbon sequestration to mitigate climate change Geoderma 123 2004 1 22 10.1016/j.geoderma.2004.01.032 Lal, R., 2004. Soil carbon sequestration to mitigate climate change. Geoderma 123, 1–22. https://doi.org/10.1016/j.geoderma.2004.01.032 Lavallee et al., 2019 J.M. Lavallee J.L. Soong M.F. Cotrufo Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century. Glob. Chang. Biol. 26 2019 261 273 10.1111/gcb.14859 Lavallee, J.M., Soong, J.L., Cotrufo, M.F., 2019. Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century. Glob. Chang. Biol. 26, 261–273. https://doi.org/10.1111/gcb.14859 Liang et al., 2022 Z. Liang E.Ø. Mortensen C. De Notaris L. Elsgaard J. Rasmussen Subsoil carbon input by cover crops depends on management history Agric. Ecosyst. Environ. 2022 326 10.1016/j.agee.2021.107800 Liang, Z., Mortensen, E.Ø., De Notaris, C., Elsgaard, L., Rasmussen, J., 2022. Subsoil carbon input by cover crops depends on management history. Agric. Ecosyst. Environ. 326. https://doi.org/10.1016/j.agee.2021.107800 Lugato et al., 2018 E. Lugato A. Leip A. Jones Mitigation potential of soil carbon management overestimated by neglecting N2O emissions Nat. Clim. Chang 8 2018 219 223 10.1038/s41558-018-0087-z Lugato, E., Leip, A., Jones, A., 2018. Mitigation potential of soil carbon management overestimated by neglecting N2O emissions. Nat. Clim. Chang. 8, 219–223. https://doi.org/10.1038/s41558–018-0087-z Lugato et al., 2021 E. Lugato J.M. Lavallee M.L. Haddix P. Panagos M.F. Cotrufo Different climate sensitivity of particulate and mineral-associated soil organic matter Nat. Geosci. 14 2021 295 300 10.1038/s41561-021-00744-x Lugato, E., Lavallee, J.M., Haddix, M.L., Panagos, P., Cotrufo, M.F., 2021. Different climate sensitivity of particulate and mineral-associated soil organic matter. Nat. Geosci. 14, 295–300. https://doi.org/10.1038/s41561–021-00744-x Miguez and Bollero, 2005 F.E. Miguez G.A. Bollero Review of corn yield response under winter cover cropping systems using meta-analytic methods Crop Sci. 45 2005 2318 2329 10.2135/cropsci2005.0014 Miguez, F.E., Bollero, G.A., 2005. Review of corn yield response under winter cover cropping systems using meta-analytic methods. Crop Sci. 45, 2318–2329. https://doi.org/10.2135/cropsci2005.0014 Mortensen et al., 2021 E.Ø. Mortensen C. De Notaris L. Peixoto J.E. Olesen J. Rasmussen Short-term cover crop carbon inputs to soil as affected by long-term cropping system management and soil fertility Agric. Ecosyst. Environ. 2021 311 10.1016/j.agee.2021.107339 Mortensen, E.Ø., De Notaris, C., Peixoto, L., Olesen, J.E., Rasmussen, J., 2021. Short-term cover crop carbon inputs to soil as affected by long-term cropping system management and soil fertility. Agric. Ecosyst. Environ. 311. https://doi.org/10.1016/j.agee.2021.107339 Nguyen, 2003 C. Nguyen Rhizodeposition of organic C by plants: mechanisms and controls Agron. EDP Sci. 23 2003 375 396 10.1051/agro:2003011 Nguyen, C., 2003. Rhizodeposition of organic C by plants: mechanisms and controls. Agron. EDP Sci. 23, 375–396. https://doi.org/10.1051/agro:2003011 Olesen et al., 2007 J.E. Olesen E.M. Hansen M. Askegaard I.A. Rasmussen The value of catch crops and organic manures for spring barley in organic arable farming F. Crop. Res 100 2007 168 178 10.1016/j.fcr.2006.07.001 Olesen, J.E., Hansen, E.M., Askegaard, M., Rasmussen, I.A., 2007. The value of catch crops and organic manures for spring barley in organic arable farming. F. Crop. Res. 100, 168–178. https://doi.org/10.1016/j.fcr.2006.07.001 Pausch and Kuzyakov, 2018 J. Pausch Y. Kuzyakov Carbon input by roots into the soil: quantification of rhizodeposition from root to ecosystem scale Glob. Chang. Biol. 24 2018 1 12 10.1111/gcb.13850 Pausch, J., Kuzyakov, Y., 2018. Carbon input by roots into the soil: Quantification of rhizodeposition from root to ecosystem scale. Glob. Chang. Biol. 24, 1–12. https://doi.org/10.1111/gcb.13850 Pausch et al., 2013 J. Pausch J. Tian M. Riederer Y. Kuzyakov Estimation of rhizodeposition at field scale: Upscaling of a 14C labeling study Plant Soil 364 2013 273 285 10.1007/s11104-012-1363-8 Pausch, J., Tian, J., Riederer, M., Kuzyakov, Y., 2013. Estimation of rhizodeposition at field scale: Upscaling of a 14C labeling study. Plant Soil 364, 273–285. https://doi.org/10.1007/s11104–012-1363–8 Phillips et al., 2011 R.P. Phillips A.C. Finzi E.S. Bernhardt Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO2 fumigation Ecol. Lett. 14 2011 187 194 10.1111/j.1461-0248.2010.01570.x Phillips, R.P., Finzi, A.C., Bernhardt, E.S., 2011. Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO2 fumigation. Ecol. Lett. 14, 187–194. https://doi.org/10.1111/j.1461–0248.2010.01570.x Phillips et al., 2012 R.P. Phillips I.C. Meier E.S. Bernhardt A.S. Grandy K. Wickings A.C. Finzi Roots and fungi accelerate carbon and nitrogen cycling in forests exposed to elevated CO2 Ecol. Lett. 15 2012 1042 1049 10.1111/j.1461-0248.2012.01827.x Phillips, R.P., Meier, I.C., Bernhardt, E.S., Grandy, A.S., Wickings, K., Finzi, A.C., 2012. Roots and fungi accelerate carbon and nitrogen cycling in forests exposed to elevated CO2. Ecol. Lett. 15, 1042–1049. https://doi.org/10.1111/j.1461–0248.2012.01827.x Poeplau and Don, 2015 C. Poeplau A. Don Carbon sequestration in agricultural soils via cultivation of cover crops - A meta-analysis Agric. Ecosyst. Environ. 200 2015 33 41 10.1016/j.agee.2014.10.024 Poeplau, C., Don, A., 2015. Carbon sequestration in agricultural soils via cultivation of cover crops - A meta-analysis. Agric. Ecosyst. Environ. 200, 33–41. https://doi.org/10.1016/j.agee.2014.10.024 Poorter et al., 2012 H. Poorter K.J. Niklas P.B. Reich J. Oleksyn P. Poot L. Mommer Biomass allocation to leaves, stems and roots: Meta-analyses of interspecific variation and environmental control N. Phytol. 193 2012 30 50 10.1111/j.1469-8137.2011.03952.x Poorter, H., Niklas, K.J., Reich, P.B., Oleksyn, J., Poot, P., Mommer, L., 2012. Biomass allocation to leaves, stems and roots: Meta-analyses of interspecific variation and environmental control. New Phytol. 193, 30–50. https://doi.org/10.1111/j.1469–8137.2011.03952.x Quemada et al., 2013 M. Quemada M. Baranski M.N.J. Nobel-de Lange A. Vallejo J.M. Cooper Meta-analysis of strategies to control nitrate leaching in irrigated agricultural systems and their effects on crop yield Agric. Ecosyst. Environ. 174 2013 1 10 10.1016/j.agee.2013.04.018 Quemada, M., Baranski, M., Nobel-de Lange, M.N.J., Vallejo, A., Cooper, J.M., 2013. Meta-analysis of strategies to control nitrate leaching in irrigated agricultural systems and their effects on crop yield. Agric. Ecosyst. Environ. 174, 1–10. https://doi.org/10.1016/j.agee.2013.04.018 Rasmussen, 2011 J. Rasmussen Why we need to restrict the use of “rhizodeposition” and the Janzen and Bruinsma equation Soil Biol. Biochem. 43 2011 2213 2214 10.1016/j.soilbio.2011.05.023 Rasmussen, J., 2011. Why we need to restrict the use of “rhizodeposition” and the Janzen and Bruinsma equation. Soil Biol. Biochem. 43, 2213–2214. https://doi.org/10.1016/j.soilbio.2011.05.023 Rasmussen et al., 2019 J. Rasmussen T. Gylfadóttir N.R. Dhalama C. De Notaris T. Kätterer Temporal fate of 15 N and 14C leaf-fed to red and white clover in pure stand or mixture with grass – Implications for estimation of legume derived N in soil and companion species Soil Biol. Biochem. 133 2019 60 71 10.1016/j.soilbio.2019.02.011 Rasmussen, J., Gylfadóttir, T., Dhalama, N.R., De Notaris, C., Kätterer, T., 2019. Temporal fate of 15 N and 14C leaf-fed to red and white clover in pure stand or mixture with grass – Implications for estimation of legume derived N in soil and companion species. Soil Biol. Biochem. 133, 60–71. https://doi.org/10.1016/j.soilbio.2019.02.011 null Shamoot et al., 1968 S. Shamoot L. McDonald W.V. Bartholomew Rhizo-Deposition of Organic Debris in Soil Soil Sci. Soc. Am. Proc. 32 1968 817 820 Shamoot, S., McDonald, L., Bartholomew, W.V., 1968. Rhizo-Deposition of Organic Debris in Soil. Soil Sci. Soc. Am. Proc. 32, 817–820. Smith et al., 2014 R.G. Smith L.W. Atwood N.D. Warren Increased productivity of a cover crop mixture is not associated with enhanced agroecosystem services PLoS One 2014 9 10.1371/journal.pone.0097351 Smith, R.G., Atwood, L.W., Warren, N.D., 2014. Increased productivity of a cover crop mixture is not associated with enhanced agroecosystem services. PLoS One 9. https://doi.org/10.1371/journal.pone.0097351 Suarez-Tapia et al., 2018 A. Suarez-Tapia I.K. Thomsen J. Rasmussen B.T. Christensen Residual N effect of long-term applications of cattle slurry using winter wheat as test crop F. Crop. Res 221 2018 257 264 10.1016/j.fcr.2017.10.013 Suarez-Tapia, A., Thomsen, I.K., Rasmussen, J., Christensen, B.T., 2018. Residual N effect of long-term applications of cattle slurry using winter wheat as test crop. F. Crop. Res. 221, 257–264. https://doi.org/10.1016/j.fcr.2017.10.013 Taghizadeh-Toosi et al., 2016 A. Taghizadeh-Toosi B.T. Christensen M. Glendining J.E. Olesen Consolidating soil carbon turnover models by improved estimates of belowground carbon input Sci. Rep. 6 2016 1 8 10.1038/srep32568 Taghizadeh-Toosi, A., Christensen, B.T., Glendining, M., Olesen, J.E., 2016. Consolidating soil carbon turnover models by improved estimates of belowground carbon input. Sci. Rep. 6, 1–8. https://doi.org/10.1038/srep32568 Thorup-Kristensen, 2001 K. Thorup-Kristensen Are differences in root growth of nitrogen catch crops important for their ability to reduce soil nitrate-N content, and how can this be measured? Plant Soil 230 2001 185 195 10.1023/A:1010306425468 Thorup-Kristensen, K., 2001. Are differences in root growth of nitrogen catch crops important for their ability to reduce soil nitrate-N content, and how can this be measured? Plant Soil 230, 185–195. https://doi.org/10.1023/A:1010306425468 Thorup-Kristensen and Dresbøll, 2010 K. Thorup-Kristensen D.B. Dresbøll Incorporation time of nitrogen catch crops influences the N effect for the succeeding crop Soil Use Manag 26 2010 27 35 10.1111/j.1475-2743.2009.00255.x Thorup-Kristensen, K., Dresbøll, D.B., 2010. Incorporation time of nitrogen catch crops influences the N effect for the succeeding crop. Soil Use Manag. 26, 27–35. https://doi.org/10.1111/j.1475–2743.2009.00255.x Thorup-Kristensen et al., 2003 K. Thorup-Kristensen J. Magid L.S. Jensen Catch crops and green manures as biological tools in nitrogen management in temperate zones Adv. Agron. 79 2003 227 302 10.1016/S0065-2113(02)79005-6 Thorup-Kristensen, K., Magid, J., Jensen, L.S., 2003. Catch crops and green manures as biological tools in nitrogen management in temperate zones. Adv. Agron. 79, 227–302. https://doi.org/10.1016/S0065–2113(02)79005–6 Tonitto et al., 2006 C. Tonitto M.B. David L.E. Drinkwater Replacing bare fallows with cover crops in fertilizer-intensive cropping systems: a meta-analysis of crop yield and N dynamics Agric. Ecosyst. Environ. 112 2006 58 72 10.1016/j.agee.2005.07.003 Tonitto, C., David, M.B., Drinkwater, L.E., 2006. Replacing bare fallows with cover crops in fertilizer-intensive cropping systems: A meta-analysis of crop yield and N dynamics. Agric. Ecosyst. Environ. 112, 58–72. https://doi.org/10.1016/j.agee.2005.07.003 Tosti et al., 2012 G. Tosti P. Benincasa M. Farneselli R. Pace F. Tei M. Guiducci K. Thorup-Kristensen Green manuring effect of pure and mixed barley - hairy vetch winter cover crops on maize and processing tomato N nutrition Eur. J. Agron. 43 2012 136 146 10.1016/j.eja.2012.06.004 Tosti, G., Benincasa, P., Farneselli, M., Pace, R., Tei, F., Guiducci, M., Thorup-Kristensen, K., 2012. Green manuring effect of pure and mixed barley - hairy vetch winter cover crops on maize and processing tomato N nutrition. Eur. J. Agron. 43, 136–146. https://doi.org/10.1016/j.eja.2012.06.004 Valkama et al., 2015 E. Valkama R. Lemola H. Känkänen E. Turtola Meta-analysis of the effects of undersown catch crops on nitrogen leaching loss and grain yields in the Nordic countries Agric. Ecosyst. Environ. 203 2015 93 101 10.1016/j.agee.2015.01.023 Valkama, E., Lemola, R., Känkänen, H., Turtola, E., 2015. Meta-analysis of the effects of undersown catch crops on nitrogen leaching loss and grain yields in the Nordic countries. Agric. Ecosyst. Environ. 203, 93–101. https://doi.org/10.1016/j.agee.2015.01.023 Villarino et al., 2021 S.H. Villarino P. Pinto R.B. Jackson G. Piñeiro Plant rhizodeposition: a key factor for soil organic matter formation in stable fractions Sci. Adv. 7 2021 1 14 10.1126/sciadv.abd3176 Villarino, S.H., Pinto, P., Jackson, R.B., Piñeiro, G., 2021. Plant rhizodeposition: A key factor for soil organic matter formation in stable fractions. Sci. Adv. 7, 1–14. https://doi.org/10.1126/sciadv.abd3176 Vogeler et al., 2022 I. Vogeler M. Böldt F. Taube Mineralisation of catch crop residues and N transfer to the subsequent crop Sci. Total Environ. 2022 810 10.1016/j.scitotenv.2021.152142 Vogeler, I., Böldt, M., Taube, F., 2022. Mineralisation of catch crop residues and N transfer to the subsequent crop. Sci. Total Environ. 810. https://doi.org/10.1016/j.scitotenv.2021.152142 White et al., 2017 C.M. White S.T. DuPont M. Hautau D. Hartman D.M. Finney B. Bradley J.C. LaChance J.P. Kaye Managing the trade off between nitrogen supply and retention with cover crop mixtures Agric. Ecosyst. Environ. 237 2017 121 133 10.1016/j.agee.2016.12.016 White, C.M., DuPont, S.T., Hautau, M., Hartman, D., Finney, D.M., Bradley, B., LaChance, J.C., Kaye, J.P., 2017. Managing the trade off between nitrogen supply and retention with cover crop mixtures. Agric. Ecosyst. Environ. 237, 121–133. https://doi.org/10.1016/j.agee.2016.12.016 Wichern et al., 2008 F. Wichern E. Eberhardt J. Mayer R.G. Joergensen T. Müller Nitrogen rhizodeposition in agricultural crops: methods, estimates and future prospects Soil Biol. Biochem. 40 2008 30 48 10.1016/j.soilbio.2007.08.010 Wichern, F., Eberhardt, E., Mayer, J., Joergensen, R.G., Müller, T., 2008. Nitrogen rhizodeposition in agricultural crops: Methods, estimates and future prospects. Soil Biol. Biochem. 40, 30–48. https://doi.org/10.1016/j.soilbio.2007.08.010 Zhang et al., 2022 Z. Zhang J.P. Kaye B.A. Bradley J.P. Amsili V. Suseela Cover crop functional types differentially alter the content and composition of soil organic carbon in particulate and mineral-associated fractions. Glob. Chang. Biol. 2022 5831 5848 10.1111/gcb.16296 Zhang, Z., Kaye, J.P., Bradley, B.A., Amsili, J.P., Suseela, V., 2022. Cover crop functional types differentially alter the content and composition of soil organic carbon in particulate and mineral-associated fractions. Glob. Chang. Biol. 5831–5848. https://doi.org/10.1111/gcb.16296