Left–right asymmetry in the nervous system: the Caenorhabditis elegans model
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ludwig, W. Das Rechts–Links Problem im Tierreich und beim Menschen (Springer, Berlin, 1932).An excellent monograph that describes anatomical L–R asymmetry across the animal kingdom, the plant kingdom and the inorganic world. It provides several conceptual frameworks of symmetry in nature, in addition to an amusing reference to the translation of L–R concepts into the good–bad classification of folk myths. This book, which is unfortunately available only in German, is an invaluable introduction to and resource for the L–R asymmetry field.
Ramsdell, A. F. & Yost, H. J. Molecular mechanisms of vertebrate left–right development. Trends Genet. 14, 459–465 (1998).
Mercola, M. & Levin, M. Left–right asymmetry determination in vertebrates. Annu. Rev. Cell Dev. Biol. 17, 779–805 (2001).
Wood, W. B. Left–right asymmetry in animal development. Annu. Rev. Cell Dev. Biol. 13, 53–82 (1997).
Hamada, H., Meno, C., Watanabe, D. & Saijoh, Y. Establishment of vertebrate left–right asymmetry. Nature Rev. Genet. 3, 103–113 (2002).
Burdine, R. D. & Schier, A. F. Conserved and divergent mechanisms in left–right axis formation. Genes Dev. 14, 763–776 (2000).
Davidson, R. J. & Hugdahl, K. (eds) Brain Asymmetry (MIT Press, Cambridge, Massachusetts, 1994).
Glick, S. D. & Ross, D. A. Lateralization of function in the rat brain. Trends Neurosci. 4, 196–199 (1981).
Miklosi, A., Andrew, R. J. & Savage, H. Behavioural lateralisation of the tetrapod type in the zebrafish (Brachydanio rerio). Physiol. Behav. 63, 127–135 (1997).
Wes, P. D. & Bargmann, C. I. C. elegans odour discrimination requires asymmetric diversity in olfactory neurons. Nature 410, 698–701 (2001).
Pierce-Shimomura, J. T., Faumont, S., Gaston, M. R., Pearson, B. J. & Lockery, S. R. The homeobox gene lim-6 is required for distinct chemosensory representations in C. elegans. Nature 410, 694–698 (2001).
White, J. G., Southgate, E., Thomson, J. N. & Brenner, S. The structure of the nervous system of the nematode Caenorhabditis elegans. Phil. Trans. R. Soc. Lond. B 314, 1–340 (1986).This paper documents the heroic efforts that were made in elucidating the complete neuronal wiring diagram of a metazoan organism. It is the first and still the only report of its kind, on which several generations of C. elegans researchers have now feasted.
Bowerman, B., Tax, F. E., Thomas, J. H. & Priess, J. R. Cell interactions involved in development of the bilaterally symmetrical intestinal valve cells during embryogenesis in Caenorhabditis elegans. Development 116, 1113–1122 (1992).
Hermann, G. J., Leung, B. & Priess, J. R. Left–right asymmetry in C. elegans intestine organogenesis involves a LIN-12/Notch signaling pathway. Development 127, 3429–3440 (2000).
Sulston, J. E., Schierenberg, E., White, J. G. & Thomson, J. N. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev. Biol. 100, 64–119 (1983).
Sulston, J. E. Neuronal cell lineages in the nematode Caenorhabditis elegans. Cold Spring Harb. Symp. Quant. Biol. 48, 443–452 (1983).
Schnabel, R., Hutter, H., Moerman, D. & Schnabel, H. Assessing normal embryogenesis in Caenorhabditis elegans using a 4D microscope: variability of development and regional specification. Dev. Biol. 184, 234–265 (1997).
Schnabel, R. Pattern formation: regional specification in the early C. elegans embryo. Bioessays 18, 591–594 (1996).
Lin, R., Hill, R. J. & Priess, J. R. POP-1 and anterior–posterior fate decisions in C. elegans embryos. Cell 92, 229–239 (1998).
Bargmann, C. I., Hartwieg, E. & Horvitz, H. R. Odorant-selective genes and neurons mediate olfaction in C. elegans. Cell 74, 515–527 (1993).
Troemel, E. R., Sagasti, A. & Bargmann, C. I. Lateral signaling mediated by axon contact and calcium entry regulates asymmetric odorant receptor expression in C. elegans. Cell 99, 387–398 (1999).
Graham, J. H., Freeman, D. C. & Emlen, J. M. Antisymmetry, directional asymmetry and dynamic morphogenesis. Genetica 89, 121–137 (1993).
Palmer, A. R. From symmetry to asymmetry: phylogenetic patterns of asymmetry variation in animals and their evolutionary significance. Proc. Natl Acad. Sci. USA 93, 14279–14286 (1996).
Sagasti, A. et al. The CaMKII UNC-43 activates the MAPKKK NSY-1 to execute a lateral signaling decision required for asymmetric olfactory neuron fates. Cell 105, 221–232 (2001).
Ward, S. Chemotaxis by the nematode Caenorhabditis elegans: identification of attractants and analysis of the response by use of mutants. Proc. Natl Acad. Sci. USA 70, 817–821 (1973).
Bargmann, C. I. & Horvitz, H. R. Chemosensory neurons with overlapping functions direct chemotaxis to multiple chemicals in C. elegans. Neuron 7, 729–742 (1991).
Yu, S., Avery, L., Baude, E. & Garbers, D. L. Guanylyl cyclase expression in specific sensory neurons: a new family of chemosensory receptors. Proc. Natl Acad. Sci. USA 94, 3384–3387 (1997).
Hobert, O., Tessmar, K. & Ruvkun, G. The Caenorhabditis elegans lim-6 LIM homeobox gene regulates neurite outgrowth and function of particular GABAergic neurons. Development 126, 1547–1562 (1999).
Sulston, J. E. & Horvitz, H. R. Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev. Biol. 56, 110–156 (1977).
Salser, S. J. & Kenyon, C. Activation of a C. elegans Antennapedia homologue in migrating cells controls their direction of migration. Nature 355, 255–258 (1992).
Harris, J., Honigberg, L., Robinson, N. & Kenyon, C. Neuronal cell migration in C. elegans: regulation of Hox gene expression and cell position. Development 122, 3117–3131 (1996).
Maloof, J. N., Whangbo, J., Harris, J. M., Jongeward, G. D. & Kenyon, C. A Wnt signaling pathway controls hox gene expression and neuroblast migration in C. elegans. Development 126, 37–49 (1999).
Whangbo, J. & Kenyon, C. A Wnt signaling system that specifies two patterns of cell migration in C. elegans. Mol. Cell 4, 851–858 (1999).
Honigberg, L. & Kenyon, C. Establishment of left/right asymmetry in neuroblast migration by UNC-40/DCC, UNC-73/Trio and DPY-19 proteins in C. elegans. Development 127, 4655–4668 (2000).
Delattre, M. & Felix, M. A. Development and evolution of a variable left–right asymmetry in nematodes: the handedness of P11/P12 migration. Dev. Biol. 232, 362–371 (2001).
Greenwald, I. LIN-12/Notch signaling: lessons from worms and flies. Genes Dev. 12, 1751–1762 (1998).
Goldschmidt, R. Das Nervensystem von Ascaris lumbricoides und megalocephala. II. Z. Wiss. Zool. 92, 306–357 (1909).
Chitwood, B. G. & Chitwood, M. B. Introduction to Nematology (University Park Press, Baltimore, 1974).
Aguinaldo, A. M. et al. Evidence for a clade of nematodes, arthropods and other moulting animals. Nature 387, 489–493 (1997).
Aurelio, O., Hall, D. H. & Hobert, O. Immunoglobulin-domain proteins required for maintenance of ventral nerve cord organization. Science 295, 686–690 (2002).
Wightman, B., Baran, R. & Garriga, G. Genes that guide growth cones along the C. elegans ventral nerve cord. Development 124, 2571–2580 (1997).
Zallen, J. A., Kirch, S. A. & Bargmann, C. I. Genes required for axon pathfinding and extension in the C. elegans nerve ring. Development 126, 3679–3692 (1999).
Kim, S. & Wadsworth, W. G. Positioning of longitudinal nerves in C. elegans by nidogen. Science 288, 150–154 (2000).
Wood, W. B. Evidence from reversal of handedness in C. elegans embryos for early cell interactions determining cell fates. Nature 349, 536–538 (1991).
Hutter, H. & Schnabel, R. glp-1 and inductions establishing embryonic axes in C. elegans. Development 120, 2051–2064 (1994).
Hutter, H. & Schnabel, R. Establishment of left–right asymmetry in the Caenorhabditis elegans embryo: a multistep process involving a series of inductive events. Development 121, 3417–3424 (1995).
Schnabel, R. & Priess, J. R. in C. elegans II (eds Riddle, D. L., Blumenthal, T., Meyer, B. J. & Priess, J. R.) 361–382 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1997).
Schnabel, R. Why does a nematode have an invariant cell lineage. Semin. Cell Dev. Biol. 8, 341–349 (1997).
Hayashi, T. & Murakami, R. Left–right asymmetry in Drosophila melanogaster gut development. Dev. Growth Differ. 43, 239–246 (2001).
Blair, S. S., Martindale, M. Q. & Shankland, M. Interactions between adjacent ganglia bring about the bilaterally alternating differentiation of RAS and CAS neurons in the leech nerve cord. J. Neurosci. 10, 3183–3193 (1990).
Martindale, M. Q. & Shankland, M. Neuronal competition determines the spatial pattern of neuropeptide expression by identified neurons of the leech. Dev. Biol. 139, 210–226 (1990).
Shankland, M. & Martindale, M. Q. Segmental specificity and lateral asymmetry in the differentiation of developmentally homologous neurons during leech embryogenesis. Dev. Biol. 135, 431–448 (1989).
Weisblat, D. A. & Shankland, M. Cell lineage and segmentation in the leech. Phil. Trans. R. Soc. Lond. B 312, 39–56 (1985).
Geschwind, N. & Levitsky, W. Human brain: left–right asymmetries in temporal speech region. Science 161, 186–187 (1968).
Galaburda, A. M. in Brain Asymmetry (eds Davidson, R. J. & Hugdahl, K.) 51–73 (MIT Press, Cambridge, Massachusetts, 1994).
Chi, J. G., Dooling, E. C. & Gilles, F. H. Left–right asymmetries of the temporal speech areas of the human fetus. Arch. Neurol. 34, 346–348 (1977).
Galaburda, A. M. in Biological Asymmetry and Handedness (ed. Wolpert, L.) 219–226 (Wiley, West Sussex, 1991).
Glick, S. D., Ross, D. A. & Hough, L. B. Lateral asymmetry of neurotransmitters in human brain. Brain Res. 234, 53–63 (1982).
Kennedy, D. N. et al. Structural and functional brain asymmetries in human situs inversus totalis. Neurology 53, 1260–1265 (1999).
Concha, M. L. & Wilson, S. W. Asymmetry in the epithalamus of vertebrates. J. Anat. 199, 63–84 (2001).
Concha, M. L., Burdine, R. D., Russell, C., Schier, A. F. & Wilson, S. W. A nodal signaling pathway regulates the laterality of neuroanatomical asymmetries in the zebrafish forebrain. Neuron 28, 399–409 (2000).
Rebagliati, M. R., Toyama, R., Fricke, C., Haffter, P. & Dawid, I. B. Zebrafish nodal-related genes are implicated in axial patterning and establishing left–right asymmetry. Dev. Biol. 199, 261–272 (1998).
Sampath, K. et al. Induction of the zebrafish ventral brain and floorplate requires cyclops/nodal signalling. Nature 395, 185–189 (1998).
Cheng, A. M., Thisse, B., Thisse, C. & Wright, C. V. The lefty-related factor Xatv acts as a feedback inhibitor of nodal signaling in mesoderm induction and L–R axis development in Xenopus. Development 127, 1049–1061 (2000).
Bisgrove, B. W., Essner, J. J. & Yost, H. J. Multiple pathways in the midline regulate concordant brain, heart and gut left–right asymmetry. Development 127, 3567–3579 (2000).
Liang, J. O. et al. Asymmetric nodal signaling in the zebrafish diencephalon positions the pineal organ. Development 127, 5101–5112 (2000).
Essner, J. J., Branford, W. W., Zhang, J. & Yost, H. J. Mesendoderm and left–right brain, heart and gut development are differentially regulated by pitx2 isoforms. Development 127, 1081–1093 (2000).
Ishikawa, Y. Medakafish as a model system for vertebrate developmental genetics. Bioessays 22, 487–495 (2000).
Brown, N. A., McCarthy, A. & Wolpert, L. Development of handed body asymmetry in mammals. Ciba Found. Symp. 162, 182–96; discussion 196–201 (1991).
Rein, K., Zockler, M., Mader, M. T., Grubel, C. & Heisenberg, M. The Drosophila standard brain. Curr. Biol. 12, 227–231 (2002).