Bệnh động mạch vành trái chính: Tổng quan về các phương pháp chẩn đoán không xâm lấn

Journal of Nuclear Cardiology - Tập 23 - Trang 1411-1429 - 2015
Nishtha Sareen1, Karthik Ananthasubramaniam2
1Department of Cardiology, St. Joseph Mercy Oakland Hospital, Pontiac, USA
2Heart and Vascular Institute, Henry Ford Hospital, Detroit, USA

Tóm tắt

Bệnh động mạch thân chính (LM) được quản lý bằng y tế đã được coi là yếu tố quyết định làm gia tăng tỷ lệ tử vong tim mạch lên gần 50% sau 3 năm theo dõi. Mặc dù bệnh LM có ý nghĩa lâm sàng quan trọng, nhưng các nghiên cứu so sánh các phương pháp chẩn đoán khác nhau, đặc biệt là không xâm lấn, còn hiếm. Các bác sĩ lâm sàng, đặc biệt là các chuyên gia hình ảnh, nên nhận thức rõ ưu điểm và nhược điểm của các phương pháp hiện có để chẩn đoán bệnh LM, vì việc tích hợp nhiều manh mối (lịch sử bệnh, triệu chứng, điện tâm đồ và hemodynamics gắng sức là rất cần thiết để nghi ngờ chẩn đoán này và tiến hành bước tiếp theo). Ở đây, chúng tôi xem xét dữ liệu hiện có về vai trò hiện tại của điện tâm đồ, chụp hình tưới máu cơ tim hạt đơn (chụp cắt lớp phát xạ một photon và chụp phát xạ positron), siêu âm tim gắng sức, chụp cắt lớp vi tính tim và chụp cộng hưởng từ tim trong đánh giá chẩn đoán bệnh LM. Ở những địa điểm áp dụng được, chúng tôi đã mở rộng thảo luận sang bệnh động mạch vành nhiều nhánh, bao gồm các kịch bản mà LMS có thể xuất hiện như tương đương LM với hoặc không có bệnh động mạch vành nhiều nhánh rộng.

Từ khóa

#bệnh động mạch vành trái chính #chẩn đoán không xâm lấn #điện tâm đồ #siêu âm tim gắng sức #chụp cắt lớp vi tính tim #chụp cộng hưởng từ tim #tưới máu cơ tim hạt đơn.

Tài liệu tham khảo

Taylor HA, Deumite NJ, Chaitman BR, Davis KB, Killip T, Rogers WJ. Asymptomatic left main coronary artery disease in the Coronary Artery Surgery Study (CASS) registry. Circulation. 1989;79:1171-9. Cohen MV, Gorlin R. Main left coronary artery disease. Clinical experience from 1964-1974. Circulation. 1975;52:275-85. Stone P, Goldschlager N. Left main coronary artery disease: Review and appraisal. Cardiovasc Med. 1979;4:165-77. DeMots H, Rosch J, McAnulty JH, Rahimtoola SH. Left main coronary artery disease. Cardiovasc Clin. 1977;8:201-11. Kalbfleisch H, Hort W. Quantitative study on the size of coronary artery supplying areas postmortem. Am Heart J. 1977;94:183-8. Farinha JB, Kaplan MA, Harris CN, Dunne EF, Carlish RA, Kay JH, et al. Disease of the left main coronary artery. Surgical treatment and long-term follow up in 267 patients. Am J Cardiol. 1978;42:124-8. Oviedo C, Maehara A, Mintz GS, Araki H, Choi SY, Tsujita K, et al. Intravascular ultrasound classification of plaque distribution in left main coronary artery bifurcations: Where is the plaque really located? Circ Cardiovasc Interv. 2010;3:105-12. Ku DN, Giddens DP, Zarins CK, Glagov S. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis. 1985;5:293-302. Chaitman BR, Davis K, Fisher LD, Bourassa MG, Mock MB, Lesperance J, et al. A life table and Cox regression analysis of patients with combined proximal left anterior descending and proximal left circumflex coronary artery disease: Non-left main equivalent lesions (CASS). Circulation. 1983;68:1163-70. Surawicz B, Knilans TK. Chou’s electrocardiography in clinical practice: Adult and pediatric. Philadelphia: Saunders; 2008. Gorgels AP, Engelen DJ, Wellens HJ. Lead aVR, a mostly ignored but very valuable lead in clinical electrocardiography. J Am Coll Cardiol. 2001;38:1355-6. Gaitonde RS, Sharma N, Ali-Hasan S, Miller JM, Jayachandran JV, Kalaria VG. Prediction of significant left main coronary artery stenosis by the 12-lead electrocardiogram in patients with rest angina pectoris and the withholding of clopidogrel therapy. Am J Cardiol. 2003;92:846-8. Yamaji H, Iwasaki K, Kusachi S, Murakami T, Hirami R, Hamamoto H, et al. Prediction of acute left main coronary artery obstruction by 12-lead electrocardiography. ST segment elevation in lead aVR with less ST segment elevation in lead V(1). J Am Coll Cardiol. 2001;38:1348-54. Kosuge M, Kimura K, Ishikawa T, Ebina T, Hibi K, Tsukahara K, et al. Combined prognostic utility of ST segment in lead aVR and troponin T on admission in non-ST-segment elevation acute coronary syndromes. Am J Cardiol. 2006;97:334-9. Yan AT, Yan RT, Kennelly BM, Anderson FA Jr, Budaj A, Lopez-Sendon J, et al. Relationship of ST elevation in lead aVR with angiographic findings and outcome in non-ST elevation acute coronary syndromes. Am Heart J. 2007;154:71-8. Kuhl JT, Berg RM. Utility of lead aVR for identifying the culprit lesion in acute myocardial infarction. Ann Noninvasive Electrocardiol. 2009;14:219-25. Barrabes JA, Figueras J, Moure C, Cortadellas J, Soler-Soler J. Prognostic value of lead aVR in patients with a first non-ST-segment elevation acute myocardial infarction. Circulation. 2003;108:814-9. Kosuge M, Kimura K, Ishikawa T, Ebina T, Shimizu T, Hibi K, et al. Predictors of left main or three-vessel disease in patients who have acute coronary syndromes with non-ST-segment elevation. Am J Cardiol. 2005;95:1366-9. Rostoff P, Piwowarska W, Konduracka E, Libionka A, Bobrowska-Juszczuk M, Stopyra K, et al. Value of lead aVR in the detection of significant left main coronary artery stenosis in acute coronary syndrome. Kardiol Pol. 2005;62:128-35 discussion 36-7. Yu FJ, Fu XH, Wei YL, Li SL, Xiao YZ, Ding C, et al. Relationship of acute left main coronary artery occlusion and ST-segment elevation in lead aVR. Chin Med J (Engl). 2004;117:459-60. Rostoff P, Wnuk M, Piwowarska W. Clinical significance of exercise-induced ST-segment elevation in lead aVR and V1 in patients with chronic stable angina pectoris and strongly positive exercise test results. Pol Arch Med Wewn. 2005;114:1180-9. Katircibasi MT, Kocum HT, Tekin A, Erol T, Tekin G, Baltali M, et al. Exercise-induced ST-segment elevation in leads aVR and V1 for the prediction of left main disease. Int J Cardiol. 2008;128:240-3. Michaelides AP, Psomadaki ZD, Richter DJ, Dilaveris PE, Andrikopoulos GK, Stefanadis C, et al. Significance of exercise-induced simultaneous ST-segment changes in lead aVR and V5. Int J Cardiol. 1999;71:49-56. Neill J, Shannon HJ, Morton A, Muir AR, Harbinson M, Adgey JA. ST segment elevation in lead aVR during exercise testing is associated with LAD stenosis. Eur J Nucl Med Mol Imaging. 2007;34:338-45. Shaw LJ, Peterson ED, Shaw LK, Kesler KL, DeLong ER, Harrell FE Jr, Muhlbaier LH, Mark DB. Use of a prognostic treadmill score in identifying diagnostic coronary disease subgroups. Circulation. 1998;98:1622-30. Thomson PD, Kelemen MH. Hypotension accompanying the onset of exertional angina. Circulation. 1975;52:28-32. Weiner DA, McCabe CH, Ryan TJ. Identification of patients with left main and three-vessel coronary disease with clinical and exercise test variables. Am J Cardiol. 1980;46:21-7. Longhurst JC, Kraus WL. Exercise-induced ST elevation in patients without myocardial infarction. Circulation. 1979;60:616. Chahine RA, Raiznar AE, Ishimori T. The clinical significance of exercise-induced ST-segment elevation. Circulation. 1976;54:209. Rehn T, Griffith LS, Achuff SC, Bailey IK, Bulkley BH, Burow R, et al. Exercise thallium-201 myocardial imaging in left main coronary artery disease: Sensitive but not specific. Am J Cardiol. 1981;48:217-23. Maddahi J, Abdulla A, Garcia EV, Swan HJ, Berman DS. Noninvasive identification of left main and triple vessel coronary artery disease: Improved accuracy using quantitative analysis of regional myocardial stress distribution and washout of thallium-201. J Am Coll Cardiol. 1986;7:53-60. Nygaard TW, Gibson RS, Ryan JM, Gascho JA, Watson DD, Beller GA. Prevalence of high-risk thallium-201 scintigraphic findings in left main coronary artery stenosis: Comparison with patients with multiple- and single-vessel coronary artery disease. Am J Cardiol. 1984;53:462-9. Afonso L, Mahajan N. Single-photon emission computed tomography myocardial perfusion imaging in the diagnosis of left main disease. Clin Cardiol. 2009;32:E11-5. Duvernoy CS, Ficaro EP, Karabajakian MZ, Rose PA, Corbett JR. Improved detection of left main coronary artery disease with attenuation-corrected SPECT. J Nucl Cardiol. 2000;7:639-48. Berman DS, Kang X, Slomka PJ, Gerlach J, de Yang L, Hayes SW, et al. Underestimation of extent of ischemia by gated SPECT myocardial perfusion imaging in patients with left main coronary artery disease. J Nucl Cardiol. 2007;14:521-8. Williams KA, Schneider CM. Increased stress right ventricular activity on dual isotope perfusion SPECT: A sign of multivessel and/or left main coronary artery disease. J Am Coll Cardiol. 1999;34:420-7. Shiba C, Chikamori T, Hida S, Igarashi Y, Tanaka H, Hirose K, et al. Important parameters in the detection of left main trunk disease using stress myocardial perfusion imaging. J Cardiol. 2009;53:43-52. Jain D, Thompson B, Wackers FJ, Zaret BL. Relevance of increased lung thallium uptake on stress imaging in patients with unstable angina and non-Q wave myocardial infarction: Results of the Thrombolysis in Myocardial Infarction (TIMI)-IIIB Study. J Am Coll Cardiol. 1997;30:421-9. Jain D, Lahiri A, Raftery EB. Lung thallium uptake on rest, stress, and redistribution cardiac imaging. Am J Card Imaging. 1990;4:303-9. Boucher CA, Zir LM, Beller GA, Okada RD, McKusick KA, Strauss HW, et al. Increased lung uptake of thallium-201 during exercise myocardial imaging: clinical, hemodynamic and angiographic implications in patients with coronary artery disease. Am J Cardiol. 1980;46:189-96. Bingham JB, McKusick KA, Strauss HW, Boucher CA, Pohost GM. Influence of coronary artery disease on pulmonary uptake of thallium-201. Am J Cardiol. 1980;46:821-6. Kushner FG, Okada RD, Kirshenbaum HD, Boucher CA, Strauss HW, Pohost GM. Lung thallium-201 uptake after stress testing in patients with coronary artery disease. Circulation. 1981;63:341-7. Choy JB, Leslie WD. Clinical correlates of Tc-99m sestamibi lung uptake. J Nucl Cardiol. 2001;8:639-44. Maisey MN, Mistry R, Sowton E. Planar imaging techniques used with technetium-99m sestamibi to evaluate chronic myocardial ischemia. Am J Cardiol. 1990;66:47e-54e. Tailefer R, Costi P, Jary M, Benjamin C, Leveille J, Lambert R. Increased 99mTc-sestamibi (MIBI) lung uptake in diagnosis of coronary artery disease: Comparison between early (5 min) and delayed (60 min) post-stress MIBI and 201-thalium (TL) planar imaging [Abstract]. J Nucl Med. 1993;34:121P. Hurwitz GA, Fox SP, Driedger AA, Willems C, Powe JE. Pulmonary uptake of sestamibi on early post-stress images: Angiographic relationships, incidence and kinetics. Nucl Med Commun. 1993;14:15-22. Kumar SP, Brewington SD, O’Brien KF, Movahed A. Clinical correlation between increased lung to heart ratio of technetium-99m sestamibi and multivessel coronary artery disease. Int J Cardiol. 2005;101:219-22. Karimi-Ashtiani S, Arsanjani R, Fish M, Kavanagh P, Germano G, Berman D, et al. Direct quantification of left ventricular motion and thickening changes using rest-stress myocardial perfusion SPECT. J Nucl Med. 2012;53:1392-400. Emmett L, Iwanochko RM, Freeman MR, Barolet A, Lee DS, Husain M. Reversible regional wall motion abnormalities on exercise technetium-99m-gated cardiac single photon emission computed tomography predict high-grade angiographic stenoses. J Am Coll Cardiol. 2002;39:991-8. Shirai N, Yamagishi H, Yoshiyama M, Teragaki M, Akioka K, Takeuchi K, et al. Incremental value of assessment of regional wall motion for detection of multivessel coronary artery disease in exercise (201)Tl gated myocardial perfusion imaging. J Nucl Med. 2002;43:443-50. Lima RS, Watson DD, Goode AR, Siadaty MS, Ragosta M, Beller GA, et al. Incremental value of combined perfusion and function over perfusion alone by gated SPECT myocardial perfusion imaging for detection of severe three-vessel coronary artery disease. J Am Coll Cardiol. 2003;42:64-70. Diamond JA, Makaryus AN, Sandler DA, Machac J, Henzlova MJ. Normal or near normal myocardial perfusion stress imaging in patients with severe coronary artery disease. J Cardiovasc Med (Hagerstown). 2008;9:820-5. Berman DS, Kiat H, Friedman JD, Diamond G. Clinical applications of exercise nuclear cardiology studies in the era of healthcare reform. Am J Cardiol. 1995;75:3d-13d. Brown KA. Prognostic value of cardiac imaging in patients with known or suspected coronary artery disease: Comparison of myocardial perfusion imaging, stress echocardiography, and position emission tomography. Am J Cardiol. 1995;75:35d-41d. Segall G. Assessment of myocardial viability by positron emission tomography. Nucl Med Commun. 2002;23:323-30. Di Carli MF, Hachamovitch R. Should PET replace SPECT for evaluating CAD? The end of the beginning. J Nucl Cardiol. 2006;13:2-7. Zaidi H, Hasegawa BH. Attenuation correction strategies in emission tomography. In: Zaidi H, editor. Quantitative analysis in nuclear medicine imaging. New York: Springer; 2006. p. 167-204. Abraham A, Kass M, Ruddy TD, deKemp RA, Lee AK, Ling MC, et al. Right and left ventricular uptake with Rb-82 PET myocardial perfusion imaging: Markers of left main or 3 vessel disease. J Nucl Cardiol. 2010;17:52-60. Dorbala S, Vangala D, Sampson U, Limaye A, Kwong R, Di Carli MF. Value of vasodilator left ventricular ejection fraction reserve in evaluating the magnitude of myocardium at risk and the extent of angiographic coronary artery disease: A 82Rb PET/CT study. J Nucl Med. 2007;48:349-58. Christian TF, Rettmann DW, Aletras AH, Liao SL, Taylor JL, Balaban RS, et al. Absolute myocardial perfusion in canines measured by using dual-bolus first-pass MR imaging. Radiology. 2004;232:677-84. Berman DS, Kang X, Gransar H, Gerlach J, Friedman JD, Hayes SW, et al. Quantitative assessment of myocardial perfusion abnormality on SPECT myocardial perfusion imaging is more reproducible than expert visual analysis. J Nucl Cardiol. 2009;16:45-53. Zaacks SM, Ali A, Parrillo JE, Barron JT. How well does radionuclide dipyridamole stress testing detect three-vessel coronary artery disease and ischemia in the region supplied by the most stenotic vessel? Clin Nucl Med. 1999;24:35-41. Camici PG, Crea F. Coronary microvascular dysfunction. N Engl J Med. 2007;356:830-40. Patel AR, Epstein FH, Kramer CM. Evaluation of the microcirculation: Advances in cardiac magnetic resonance perfusion imaging. J Nucl Cardiol. 2008;15:698-708. Al-Saadi N, Nagel E, Gross M, Bornstedt A, Schnackenburg B, Klein C, et al. Noninvasive detection of myocardial ischemia from perfusion reserve based on cardiovascular magnetic resonance. Circulation. 2000;101:1379-83. Hsu LY, Groves DW, Aletras AH, Kellman P, Arai AE. A quantitative pixel-wise measurement of myocardial blood flow by contrast-enhanced first-pass CMR perfusion imaging: Microsphere validation in dogs and feasibility study in humans. JACC Cardiovasc Imaging. 2012;5:154-66. Muzik O, Duvernoy C, Beanlands RS, Sawada S, Dayanikli F, Wolfe ER Jr, et al. Assessment of diagnostic performance of quantitative flow measurements in normal subjects and patients with angiographically documented coronary artery disease by means of nitrogen-13 ammonia and positron emission tomography. J Am Coll Cardiol. 1998;31:534-40. Camici PG, Rimoldi OE. The clinical value of myocardial blood flow measurement. J Nucl Med. 2009;50:1076-87. Murthy VL, Naya M, Foster CR, Hainer J, Gaber M, Di Carli G, et al. Improved cardiac risk assessment with noninvasive measures of coronary flow reserve. Circulation. 2011;124:2215-24. Herzog BA, Husmann L, Valenta I, Gaemperli O, Siegrist PT, Tay FM, et al. Long-term prognostic value of 13N-ammonia myocardial perfusion positron emission tomography added value of coronary flow reserve. J Am Coll Cardiol. 2009;54:150-6. Tio RA, Dabeshlim A, Siebelink HM, de Sutter J, Hillege HL, Zeebregts CJ, et al. Comparison between the prognostic value of left ventricular function and myocardial perfusion reserve in patients with ischemic heart disease. J Nucl Med. 2009;50:214-9. Murthy VL, Naya M, Foster CR, Gaber M, Hainer J, Klein J, et al. Association between coronary vascular dysfunction and cardiac mortality in patients with and without diabetes mellitus. Circulation. 2012;126:1858-68. Naya M, Murthy VL, Taqueti VR, Foster CR, Klein J, Garber M, et al. Preserved coronary flow reserve effectively excludes high-risk coronary artery disease on angiography. J Nucl Med. 2014;55:248-55. Parkash R, deKemp RA, Ruddy TD, Kitsikis A, Hart R, Beauchesne L, et al. Potential utility of rubidium 82 PET quantification in patients with 3-vessel coronary artery disease. J Nucl Cardiol. 2004;11:440-9. Andrade MJ, Picano E, Pingitore A, Petix N, Mazzoni V, Landi P, et al. Dipyridamole stress echocardiography in patients with severe left main coronary artery narrowing. Echo Persantine International Cooperative (EPIC) Study Group-Subproject “Left Main Detection”. Am J Cardiol. 1994;73:450-5. Attenhofer CH, Pellikka PA, Oh JK, Roger VL, Sohn DW, Seward JB. Comparison of ischemic response during exercise and dobutamine echocardiography in patients with left main coronary artery disease. J Am Coll Cardiol. 1996;27:1171-7. Karabinos IK, Papadopoulos A, Karvouni E, Korovesis S, Giazitzoglou E, Katritsis D. Reliability and safety of dobutamine stress echocardiography for detection of myocardial ischemia-viability: Experience from 802 consecutive studies. Hellenic J Cardiol. 2004;45:71-83. Mahajan N, Polavaram L, Vankayala H, Ference B, Wang Y, Ager J, et al. Diagnostic accuracy of myocardial perfusion imaging and stress echocardiography for the diagnosis of left main and triple vessel coronary artery disease: A comparative meta-analysis. Heart. 2010;96:956-66. Saraste M, Vesalainen RK, Ylitalo A, Saraste A, Koskenvuo JW, Toikka JO, Vaittinen MA, Hartiala JJ, Airaksinen KE. Transthoracic Doppler echocardiography as a noninvasive tool to assess coronary artery stenoses-a comparison with quantitative coronary angiography. J Am Soc Echocardiogr. 2005;18:679-85. Anjaneyulu A, Raghu K, Chandramukhi S, Satyajit GM, Arramraja S, Raghavaraju P, Krishnamraju P, Somaraju B. Evaluation of left main coronary artery stenosis by transthoracic echocardiography. J Am Soc Echocardiogr. 2008;21:855-60. Caiati C, Zedda N, Cadeddu M, Chen L, Montaldo C, Iliceto S, Lepera ME, Favale S. Detection, location, and severity assessment of left anterior descending coronary artery stenoses by means of contrast-enhanced transthoracic harmonic echo Doppler. Eur Heart J. 2009;30:1797-806. Ruzsa Z, Palinkas A, Forster T, Ungi I, Varga A. Angiographically borderline left main coronary artery lesions: Correlation of transthoracic doppler echocardiography and intravascular ultrasound: A pilot study. Cardiovasc Ultrasound. 2011;9:19. Small GR, Kazmi M, Dekemp RA, Chow BJ. Established and emerging dose reduction methods in cardiac computed tomography. J Nucl Cardiol. 2011;18:570-9. Mowatt G, Cummins E, Waugh N, Walker S, Cook J, Jia X, et al. Systematic review of the clinical effectiveness and cost-effectiveness of 64-slice or higher computed tomography angiography as an alternative to invasive coronary angiography in the investigation of coronary artery disease. Health Technol Assess. 2008;12:iii-iv ix-143. Stein PD, Yaekoub AY, Matta F, Sostman HD. 64-slice CT for diagnosis of coronary artery disease: A systematic review. Am J Med. 2008;121:715-25. Cademartiri F, La Grutta L, Malago R, Alberghina F, Palumbo A, Belgrano M, et al. Assessment of left main coronary artery atherosclerotic burden using 64-slice CT coronary angiography: Correlation between dimensions and presence of plaques. Radiol Med. 2009;114:358-69. Hoffmann U, Moselewski F, Cury RC, Ferencik M, Jang IK, Diaz LJ, Abbara S, Brady TJ, Achenbach S. Predictive value of 16-slice multidetector spiral computed tomography to detect significant obstructive coronary artery disease in patients at high risk for coronary artery disease: Patient-versus segment-based analysis. Circulation. 2004;110:2638-40. Hamdan A, Asbach P, Wellnhofer E, Klein C, Gebker R, Kelle S, et al. A prospective study for comparison of MR and CT imaging for detection of coronary artery stenosis. JACC Cardiovasc Imaging. 2011;4:50-61. Nagel E, Lehmkuhl HB, Bocksch W, Klein C, Vogel U, Frantz E, et al. Noninvasive diagnosis of ischemia-induced wall motion abnormalities with the use of high-dose dobutamine stress MRI: Comparison with dobutamine stress echocardiography. Circulation. 1999;99:763-70. Pennell DJ, Underwood SR, Manzara CC, Swanton RH, Walker JM, Ell PJ, et al. Magnetic resonance imaging during dobutamine stress in coronary artery disease. Am J Cardiol. 1992;70:34-40. Baer FM, Voth E, Theissen P, Schicha H, Sechtem U. Gradient-echo magnetic resonance imaging during incremental dobutamine infusion for the localization of coronary artery stenoses. Eur Heart J. 1994;15:218-25. van Rugge FP, van der Wall EE, Spanjersberg SJ, de Roos A, Matheijssen NA, Zwinderman AH, et al. Magnetic resonance imaging during dobutamine stress for detection and localization of coronary artery disease. Quantitative wall motion analysis using a modification of the centerline method. Circulation. 1994;90:127-38. McCarthy RM, Deshpande VS, Beohar N, Meyers SN, Shea SM, Green JD, et al. Three dimensional breathhold magnetization-prepared TrueFISP: A pilot study for magnetic resonance imaging of the coronary artery disease. Invest Radiol. 2007;42:665-70. Yang CW, Carr JC, Francois CJ, Shea SM, Deshpande VS, Meyers SN, et al. Coronary magnetic resonance angiography using magnetization-prepared contrast-enhanced breath-hold volume-targeted imaging (MPCE-VCATS). Invest Radiol. 2006;41:639-44. So NM, Lam WW, Li D, Chan AK, Sanderson JE, Metreweli C. Magnetic resonance angiography of coronary arteries with a 3-dimensional magnetization-prepared true fast imaging with steady-state precession sequence compared with conventional coronary angiography. Am Heart J. 2005;150:530-5. Kim WY, Danias PG, Stuber M, Flamm SD, Plein S, Nagel E, et al. Coronary magnetic resonance angiography for the detection of coronary stenoses. N Engl J Med. 2001;345:1863-9. Sardanelli F, Molinari G, Zandrino F, Balbi M. Three-dimensional, navigator-echo MR coronary angiography in detecting stenoses of the major epicardial vessels, with conventional coronary angiography as the standard of reference. Radiology. 2000;214:808-14. Bunce N, Rahman S, Jhooti P, Lorenz C, Pennell D. The assessment of coronary artery disease by combined magnetic resonance coronary angiography and perfusion [Abstract]. J Cardiovasc Magn Reson. 2001;3:118. Moustapha AI, Pereyra M, Muthupillai R, Wilson JM, Flamm SD. Coronary magnetic resonance angiography using a free breathing, T2 weighted, three-dimensional gradient echo sequence with navigator respiratory and ECG gating can be used to detect coronary artery disease [Abstract]. J Am Coll Cardiol. 2001;37:380A. Sommer T, Hofer U, Hackenbroch M, Meyer C, Flacke S, Schmiedel A, et al. Submillimeter 3D coronary MR angiography with real-time navigator correction in 107 patients with suspected coronary artery disease. Rofo. 2002;174:459-66. Bogaert J, Kuzo R, Dymarkowski S, Beckers R, Piessens J, Rademakers FE. Coronary artery imaging with real-time navigator three-dimensional turbo-field-echo MR coronary angiography: Initial experience. Radiology. 2003;226:707-16. Plein S, Ridgway JP, Jones TR, Bloomer TN, Sivananthan MU. Coronary artery disease: Assessment with a comprehensive MR imaging protocol-initial results. Radiology. 2002;225:300-7. Hundley WG, Hamilton CA, Clarke GD, Hillis LD, Herrington DM, Lange RA, et al. Visualization and functional assessment of proximal and middle left anterior descending coronary stenosis in humans with magnetic resonance imaging. Circulation. 1999;99:3248-54.