Left-invariant hypercontact structures on three-dimensional Lie groups

Springer Science and Business Media LLC - Tập 69 - Trang 97-108 - 2014
Giovanni Calvaruso1, Antonella Perrone1
1Dipartimento di Matematica e Fisica “E. De Giorgi”, Università del Salento, Lecce, Italy

Tóm tắt

We characterize three-dimensional manifolds admitting an almost contact metric 3-structure and completely classify left-invariant hypercontact structures on three-dimensional Lie groups.

Tài liệu tham khảo

D.E. Blair, Riemannian geometry of contact and symplectic manifolds, Progress in Math, vol. 203 (Birkhäuser, Boston, 2001) G. Calvaruso, Three-dimensional homogeneous almost contact metric structures. J. Geom. Phys. 69, 60–73 (2013) G. Calvaruso, D. Perrone, Contact pseudo-metric manifolds. Diff. Geom. Appl. 28, 615–634 (2010) B. Cappelletti Montano, A. De Nicola, 3-Sasakian manifolds, 3-cosymplectic manifolds and Darboux theorem. J. Geom. Phys. 57, 2509–2520 (2007) H. Geiges, J. Gonzalo, Contact geometry and complex surfaces. Invent. Math. 121, 147–209 (1995) H. Geiges, C.B. Thomas, Hypercontact manifolds. J. Lond. Math. Soc. 51, 345–352 (1995) S. Hohloch, G. Noetzel, D. Salamon, Hypercontact structures and Floer homology. Geom. Topol. 13, 2543–2617 (2009) S. Ianus, R. Mazzocco, G.E. Vilcu, Real lightlike hypersurfaces of paraquaternionic Khler manifolds. Mediterr. J. Math. 3, 581–592 (2006) T. Kashiwada, On a contact 3-structure. Math. Z. 238, 829–832 (2001) R.C. Kirby, The topology of 4-manifolds, Lecture Notes Mathematics, vol. 1374 (Springer-Verlag, Berlin, 1989) S. Kaneyuki, M. Konzai, Paracomplex structures and affine symmetric spaces. Tokyo J. Math. 8, 301–318 (1985) J. Milnor, Curvature of left invariant metrics on Lie groups. Adv. Math. 21, 293–329 (1976) D. Perrone, Hypercontact metric three-manifolds. C. R. Math. Acad. Sci. Soc. R. Can. 24, 97–101 (2002) S. Zamkovoy, Canonical connections on paracontact manifolds. Ann. Glob. Anal. Geom. 36, 37–60 (2009)