Lefschetz fixed point theorems in generalized neighborhood extension spaces with respect to a map
Tóm tắt
Từ khóa
Tài liệu tham khảo
Agarwal, R.P., O’Regan, D.: A Lefschetz fixed point theorem for admissible maps in Fréchet spaces, Dynam. Systems Appl., 16 (2007), 1–12
Agarwal, R.P., O’Regan, D.: Fixed point theory for compact absorbing contractive admissible type maps, Appl. Anal., 87 (2008), 497–508
Agarwal, R.P., O’Regan, D., Park, S.: Fixed point theory for multimaps in extension type spaces, J. KoreaMath. Soc., 39 (2002), 579–591
Ben-El-Mechaiekh, H.: The coincidence problem for compositions of set valued maps, Bull. Aust. Math. Soc., 41 (1990), 421–434
Ben-El-Mechaiekh, H.: Spacesandmaps approximation and fixed points, J.Comput.Appl. Math., 41 (2000), 283–308
Ben-El-Mechaiekh, H., Deguire, P.: General fixed point theorems for non-convex set valued maps, C. R. Acad. Sci. Paris, 312 (1991), 433–438
Engelking, R.: General Topology. Berlin: Heldermann Verlag (1989)
Fournier, G., Gorniewicz, L.: The Lefschetz fixed point theorem for multi-valued maps of non-metrizable spaces, Fund. Math., 92 (1976), 213–222
Gorniewicz, L.: Topological fixed point theory of multivalued mappings. Dordrecht: Kluwer Acad. Publishers (1999)
[10]. Gorniewicz, L., Granas, A.: Some general theorems in coincidence theory, J.Math. Pures Appl., 60 (1981), 361–373
Granas, A.: Fixed point theorems for approximative ANR’s, Bull. Acad. Polon. Sc., 16 (1968), 15–19
Kelley, J.L.: General Topology. New York: D. Van Nostrand Reinhold Co. (1955)
O’Regan, D.: Fixed point theory on extension type spaces and essential maps on topological spaces, Fixed Point Theory Appl., 2004 (2004), 13–20
O’Regan, D.: Asymptotic Lefschetz fixed points for ANES(compact)maps, Rend.Circ.Mat. Palermo, 58 (2009), 87–97
O’Regan, D.: Fixed point theory for compact absorbing contractions in extension type spaces, CUBO, to appear
O’Regan, D.: Periodic points for compact absorbing contractions in extensiontype spaces, Commun. Appl. Anal., to appear
O’Regan, D.: Fixed point theory in generalized approximate neighborhood extension spaces, Fixed Point Theory, to appear