Lebesgue type decompositions for linear relations and Ando’s uniqueness criterion
Tóm tắt
Từ khóa
Tài liệu tham khảo
N. I. Achieser and I.M. Glasman, Theorie der linearen Operatoren im Hilbertraum, 8th edition, Akademie Verlag, Berlin, 1981.
T. Ando, Lebesgue-type decomposition of positive operators, Acta Sci. Math. (Szeged), 38 (1976), 253–260.
Yu. Arlinski˘ı, On the mappings connected with parallel addition of nonnegative operators, Positivity, 21 (2017), 299–327.
J. Behrndt, S. Hassi, H.S.V. de Snoo and R. Wietsma, Monotone convergence theorems for semibounded operators and forms with applications, Proc. Royal Soc. Edinburgh, 140A (2010), 927–951.
I. Gohberg and M. G. Kre˘ın, The basic propositions on defect numbers, root numbers and indices of linear operators, Uspekhi Mat. Nauk., 12 (1957), 43–118 (Russian) [English translation: Transl. Amer. Math. Soc. (2), 13 (1960), 185–264].
S. Hassi, A. Sandovici, H.S.V. de Snoo and H. Winkler, Form sums of nonnegative selfadjoint operators, Acta Math. Hungar., 111 (2006), 81–105.
S. Hassi, Z. Sebestyén and H.S.V. de Snoo, Domain and range descriptions for adjoint relations, and parallel sums and differences of forms, Oper. Theory Adv. Appl., 198 (2009), 211–227.
S. Hassi, Z. Sebestyén and H.S.V. de Snoo, Lebesgue type decompositions for nonnegative forms, J. Functional Analysis, 257 (2009), 3858–3894.
S. Hassi, Z. Sebestyén, H.S.V. de Snoo and F.H. Szafraniec, A canonical decomposition for linear operators and linear relations, Acta Math. Hungarica, 115 (2007), 281–307.
S. Hassi and H.S.V. de Snoo, Factorization, majorization, and domination for linear relations, Annales Univ. Sci. Budapest, 58 (2015), 53–70.
S. Hassi and H.S.V. de Snoo, Lebesgue type decompositions and Radon-Nikodym derivatives for pairs of bounded linear operators, in preparation.
S. Hassi, H.S.V. de Snoo and F.H. Szafraniec, Componentwise and Cartesian decompositions of linear relations, Dissertationes Mathematicae, 465 (2009), 59 pages.
S. Izumino, Decomposition of quotients of bounded operators with respect to closability and Lebesgue-type decomposition of positive operators, Hokkaido Math. J., 18 (1989), 199–209.
P.E.T. Jorgensen, Unbounded operators; perturbations and commutativity problems, J. Functional Analysis, 39 (1980), 281–307.
T. Kato, Perturbation theory for linear operators, Springer-Verlag, Berlin, 1980.
S. Ôta, Decomposition of unbounded derivations in operator algebras, Tôhoku Math. J., 33 (1981), 215–225.
S. Ôta, Closed linear operators with domain containing their range, Proc. Edinburgh Math. Soc., 27 (1984), 229–233.
S. Ôta, On a singular part of an unbounded operator, Zeitschrift für Analysis und ihre Anwendungen, 7 (1987), 15–18.
Z. Sebestyén, Zs. Tarcsay and T. Titkos, Lebesgue decomposition theorems, Acta Sci. Math. (Szeged), 79 (2013), 219–233.
Z. Sebestyén, Zs. Tarcsay and T. Titkos, A short-type decomposition of forms, Operators Matrices, 9 (2015), 815–830.
B. Simon, A canonical decomposition for quadratic forms with applications to monotone convergence theorems, J. Functional Analysis, 28 (1978), 377–385.
M.H. Stone, Linear transformations in Hilbert space and their applications to analysis, Amer. Math. Soc. Colloquium Publications, Vol. 15, Amer. Math. Soc., 1932.
Zs. Tarcsay, Radon–Nikodym theorems for nonnegative forms, measures and representable functionals, Complex Anal. Oper. Theory, 10 (2016), 479–494.
T. Titkos, Arlinskii’s iteration and its applications, Proc. Edinburgh Math. Soc., pp. 9; doi: 10. 1017/S0013091518000287.
J. Weidmann, Lineare Operatoren im Hilberträumen, B.G. Teubner, Stuttgart, 1976.
D. Werner, Funktionalanalysis, 3. Auflage, Springer, 2000.