Lebesgue property for convex risk measures on Orlicz spaces
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bourgain, J.: La propiété de Radon-Nikodým Publications Mathématiques de l’Université Pierre et Marie Curie. 36 (1979)
Biagini, S., Fritelli, M.: On the Extension of the Namioka-Klee Theorem and on the Fatou Property for Risk Measures Optimality and Risk- Modern Trends in Mathematical Finance. The Kabanov Festschrift, pp. 1–28. Springer, Berling (2009)
Biagini S., Fritelli M.: A unified framework for utility maximization problems: an Orlicz space approach. Ann. Appl. Prob. 18(3), 929–966 (2008)
Calvert B., Fitzpatrick S.: Erratum: In a nonreflexive space the subdifferential is not onto. Math. Z. 235, 627 (2000)
Cascales B., Fonf V., Orihuela J., Troyanski S.: Boundaries of Asplund spaces. J. Funct. Anal. 259, 1346–1368 (2010)
Delbaen F. : Differentiability properties of utility functions. In: Delbaen, F. et al. (eds) Optimality and Risk-Modern Trends in Mathematical Finance, pp. 39–48. Springer, Berlin (2009)
Delbaen F.: Coherent Risk Measures. Cattedra Galileiana, Scuola Normale Superiore Pisa (2003)
Delbaen, F.: Draft: monetary utility functions. Lectures notes in preparation. Personal communication
Fabian, M., Habala, P., Hájek, P., Montesinos, V., Zizler, V.: Banach Space Theory. The Basis for Linear and Nonlinear Analysis. Springer, CMS Books in Mathematics, Berlin (2011)
Föllmer, H., Schied, A.: Stochastic Finance. An Introduction in Discrete Time de Gruyter Studies in Mathematics 27, 2nd edn. Walter de Gruyter, Berlin (2004)
Haydon R., Levy M., Odell E.: On sequences without weak* convergent convex block subsequences. Proc. Am. Math. Soc. 100, 94–98 (1987)
Jouini E., Schachermayer W., Touzi N.: Law invariant risk measures have the Fatou property. Adv. Math. Econ. 9, 49–71 (2006)
Orihuela J., Ruiz Galán M.: A coercive James’s weak compactness theorem and nonlinear variational problems. Nonlinear Anal. 75, 598–611 (2012)
Pták, V.: A combinatorial lemma on the existence of convex means and its applications to weak compactness. In: Klee, V. (ed.) Proceedings of symposia in pure mathematics VII, convexity. American Mathematical Society, Providence, (1963)
Rao M.M., Ren Z.D.: Theory of Orlicz Spaces. Marce Dekker, Inc, Ney York (1991)
Ruiz Galán M., Simons S.: A new minimax theorem and a perturbed James’s theorem. Bull. Austr. Math. Soc. 66, 43–56 (2002)
Saint Raymond, J.: Characterizing convex functions on a reflexive Banach space (preprint)
Simons S.: An eigenvector proof of Fatou’s lemma for continuous functions. Math. Intell. 17, 67–70 (1995)
Simons, S.: From Hahn-Banach to Monotonicity. Lecture Notes in Mathematicas 1693. Springer Verlag, New York (2008)