Leaving no one behind: tracing every human thymocyte by single-cell RNA-sequencing
Tóm tắt
The thymus is the primary organ for T-cell development, providing an essential microenvironment consisting of the appropriate cytokine milieu and specialized stromal cells. Thymus-seeding progenitors from circulation immigrate into the thymus and undergo the stepwise T-cell specification, commitment, and selection processes. The transcriptional factors, epigenetic regulators, and signaling pathways involved in the T-cell development have been intensively studied using mouse models. Despite our growing knowledge of T-cell development, major questions remain unanswered regarding the ontogeny and early events of T-cell development at the fetal stage, especially in humans. The recently developed single-cell RNA-sequencing technique provides an ideal tool to investigate the heterogeneity of T-cell precursors and the molecular mechanisms underlying the divergent fates of certain T-cell precursors at the single-cell level. In this review, we aim to summarize the current progress of the study on human thymus organogenesis and thymocyte and thymic epithelial cell development, which is to shed new lights on developing novel strategies for in vitro T-cell regeneration and thymus rejuvenation.
Tài liệu tham khảo
Shortman K, Wu L (1996) Early T lymphocyte progenitors. Annu Rev Immunol 14:29–47. https://doi.org/10.1146/annurev.immunol.14.1.29
Hao QL, George AA, Zhu J, Barsky L, Zielinska E, Wang X, Price M, Ge S, Crooks GM (2008) Human intrathymic lineage commitment is marked by differential CD7 expression: identification of CD7- lympho-myeloid thymic progenitors. Blood 111(3):1318–1326. https://doi.org/10.1182/blood-2007-08-106294
Haddad R, Guimiot F, Six E, Jourquin F, Setterblad N, Kahn E, Yagello M, Schiffer C, Andre-Schmutz I, Cavazzana-Calvo M, Gluckman JC, Delezoide AL, Pflumio F, Canque B (2006) Dynamics of thymus-colonizing cells during human development. Immunity 24(2):217–230. https://doi.org/10.1016/j.immuni.2006.01.008
Takahama Y (2006) Journey through the thymus: stromal guides for T-cell development and selection. Nat Rev Immunol 6(2):127–135. https://doi.org/10.1038/nri1781
Krueger A, Ziętara N, Łyszkiewicz M (2017) T cell development by the numbers. Trends Immunol 38(2):128–139. https://doi.org/10.1016/j.it.2016.10.007
Liu CP, Auerbach R (1991) In vitro development of murine T cells from prethymic and preliver embryonic yolk sac hematopoietic stem cells. Develop 113(4):1315–1323
Yoshimoto M, Porayette P, Glosson NL, Conway SJ, Carlesso N, Cardoso AA, Kaplan MH, Yoder MC (2012) Autonomous murine T-cell progenitor production in the extra-embryonic yolk sac before HSC emergence. Blood 119(24):5706–5714. https://doi.org/10.1182/blood-2011-12-397489
Lacaud G, Kouskoff V (2017) Hemangioblast, hemogenic endothelium, and primitive versus definitive hematopoiesis. Exp Hematol 49:19–24. https://doi.org/10.1016/j.exphem.2016.12.009
McVay LD, Carding SR (1996) Extrathymic origin of human gamma delta T cells during fetal development. J Immunol 157(7):2873–2882
McVay LD, Jaswal SS, Kennedy C, Hayday A, Carding SR (1998) The generation of human gammadelta T cell repertoires during fetal development. J Immunol 160(12):5851–5860
Abramson J, Anderson G (2017) Thymic epithelial cells. Annu Rev Immunol 35:85–118. https://doi.org/10.1146/annurev-immunol-051116-052320
Kadouri N, Nevo S, Goldfarb Y, Abramson J (2020) Thymic epithelial cell heterogeneity: TEC by TEC. Nat Rev Immunol 20(4):239–253. https://doi.org/10.1038/s41577-019-0238-0
Anderson G, Takahama Y (2012) Thymic epithelial cells: working class heroes for T cell development and repertoire selection. Trends Immunol 33(6):256–263. https://doi.org/10.1016/j.it.2012.03.005
Žuklys S, Handel A, Zhanybekova S, Govani F, Keller M, Maio S, Mayer CE, Teh HY, Hafen K, Gallone G, Barthlott T, Ponting CP, Holländer GA (2016) Foxn1 regulates key target genes essential for T cell development in postnatal thymic epithelial cells. Nat Immunol 17(10):1206–1215. https://doi.org/10.1038/ni.3537
Kajiura F, Sun S, Nomura T, Izumi K, Ueno T, Bando Y, Kuroda N, Han H, Li Y, Matsushima A, Takahama Y, Sakaguchi S, Mitani T, Matsumoto M (2004) NF-kappa B-inducing kinase establishes self-tolerance in a thymic stroma-dependent manner. J Immunol 172(4):2067–2075. https://doi.org/10.4049/jimmunol.172.4.2067
Hikosaka Y, Nitta T, Ohigashi I, Yano K, Ishimaru N, Hayashi Y, Matsumoto M, Matsuo K, Penninger JM, Takayanagi H, Yokota Y, Yamada H, Yoshikai Y, Inoue J, Akiyama T, Takahama Y (2008) The cytokine RANKL produced by positively selected thymocytes fosters medullary thymic epithelial cells that express autoimmune regulator. Immunity 29(3):438–450. https://doi.org/10.1016/j.immuni.2008.06.018
Akiyama T, Shimo Y, Yanai H, Qin J, Ohshima D, Maruyama Y, Asaumi Y, Kitazawa J, Takayanagi H, Penninger JM, Matsumoto M, Nitta T, Takahama Y, Inoue J (2008) The tumor necrosis factor family receptors RANK and CD40 cooperatively establish the thymic medullary microenvironment and self-tolerance. Immunity 29(3):423–437. https://doi.org/10.1016/j.immuni.2008.06.015
Ucar O, Li K, Dvornikov D, Kreutz C, Timmer J, Matt S, Brenner L, Smedley C, Travis MA, Hofmann TG, Klingmüller U, Kyewski B (2016) A thymic epithelial stem cell pool persists throughout ontogeny and is modulated by TGF-β. Cell Rep 17(2):448–457. https://doi.org/10.1016/j.celrep.2016.09.027
Hauri-Hohl M, Zuklys S, Holländer GA, Ziegler SF (2014) A regulatory role for TGF-β signaling in the establishment and function of the thymic medulla. Nat Immunol 15(6):554–561. https://doi.org/10.1038/ni.2869
Kumar BV, Connors TJ, Farber DL (2018) Human T cell development, localization, and function throughout Life. Immunity 48(2):202–213. https://doi.org/10.1016/j.immuni.2018.01.007
Shah DK, Zúñiga-Pflücker JC (2014) An overview of the intrathymic intricacies of T cell development. J Immunol 192(9):4017–4023. https://doi.org/10.4049/jimmunol.1302259
Famili F, Wiekmeijer AS, Staal FJ (2017) The development of T cells from stem cells in mice and humans. Future Sci OA 3(3):Fso186. https://doi.org/10.4155/fsoa-2016-0095
Taghon T, Waegemans E, Van de Walle I (2012) Notch signaling during human T cell development. Curr Top Microbiol Immunol 360:75–97. https://doi.org/10.1007/82_2012_230
Farley AM, Morris LX, Vroegindeweij E, Depreter ML, Vaidya H, Stenhouse FH, Tomlinson SR, Anderson RA, Cupedo T, Cornelissen JJ, Blackburn CC (2013) Dynamics of thymus organogenesis and colonization in early human development. Develop 140(9):2015–2026. https://doi.org/10.1242/dev.087320
Gordon J, Manley NR (2011) Mechanisms of thymus organogenesis and morphogenesis. Develop 138(18):3865–3878. https://doi.org/10.1242/dev.059998
Haynes BF, Heinly CS (1995) Early human T cell development: analysis of the human thymus at the time of initial entry of hematopoietic stem cells into the fetal thymic microenvironment. J Exp Med 181(4):1445–1458. https://doi.org/10.1084/jem.181.4.1445
Haynes BF, Martin ME, Kay HH, Kurtzberg J (1988) Early events in human T cell ontogeny. Phenotypic characterization and immunohistologic localization of T cell precursors in early human fetal tissues. J Exp Med 168(3):1061–1080. https://doi.org/10.1084/jem.168.3.1061
Cupedo T, Nagasawa M, Weijer K, Blom B, Spits H (2005) Development and activation of regulatory T cells in the human fetus. Eur J Immunol 35(2):383–390. https://doi.org/10.1002/eji.200425763
Michaëlsson J, Mold JE, McCune JM, Nixon DF (2006) Regulation of T cell responses in the developing human fetus. J Immunol 176(10):5741–5748. https://doi.org/10.4049/jimmunol.176.10.5741
den Braber I, Mugwagwa T, Vrisekoop N, Westera L, Mögling R, de Boer AB, Willems N, Schrijver EH, Spierenburg G, Gaiser K, Mul E, Otto SA, Ruiter AF, Ackermans MT, Miedema F, Borghans JA, de Boer RJ, Tesselaar K (2012) Maintenance of peripheral naive T cells is sustained by thymus output in mice but not humans. Immunity 36(2):288–297. https://doi.org/10.1016/j.immuni.2012.02.006
Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, Wang X, Bodeau J, Tuch BB, Siddiqui A, Lao K, Surani MA (2009) mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods 6(5):377–382. https://doi.org/10.1038/nmeth.1315
Tang F, Lao K, Surani MA (2011) Development and applications of single-cell transcriptome analysis. Nat Methods 8(4 Suppl):S6–S11. https://doi.org/10.1038/nmeth.1557
Zhou F, Li X, Wang W, Zhu P, Zhou J, He W, Ding M, Xiong F, Zheng X, Li Z, Ni Y, Mu X, Wen L, Cheng T, Lan Y, Yuan W, Tang F, Liu B (2016) Tracing haematopoietic stem cell formation at single-cell resolution. Nature 533(7604):487–492. https://doi.org/10.1038/nature17997
Azizi E, Carr AJ, Plitas G, Cornish AE, Konopacki C, Prabhakaran S, Nainys J, Wu K, Kiseliovas V, Setty M, Choi K, Fromme RM, Dao P, McKenney PT, Wasti RC, Kadaveru K, Mazutis L, Rudensky AY, Pe'er D (2018) Single-cell map of diverse immune phenotypes in the breast tumor microenvironment. Cell 174(5):1293–1308.e1236. https://doi.org/10.1016/j.cell.2018.05.060
Zeng Y, He J, Bai Z, Li Z, Gong Y, Liu C, Ni Y, Du J, Ma C, Bian L, Lan Y, Liu B (2019) Tracing the first hematopoietic stem cell generation in human embryo by single-cell RNA sequencing. Cell Res 29(11):881–894. https://doi.org/10.1038/s41422-019-0228-6
Biton M, Haber AL, Rogel N, Burgin G, Beyaz S, Schnell A, Ashenberg O, Su CW, Smillie C, Shekhar K, Chen Z, Wu C, Ordovas-Montanes J, Alvarez D, Herbst RH, Zhang M, Tirosh I, Dionne D, Nguyen LT, Xifaras ME, Shalek AK, von Andrian UH, Graham DB, Rozenblatt-Rosen O, Shi HN, Kuchroo V, Yilmaz OH, Regev A, Xavier RJ (2018) T helper cell cytokines modulate intestinal stem cell renewal and differentiation. Cell 175(5):1307–1320.e1322. https://doi.org/10.1016/j.cell.2018.10.008
Brown CC, Gudjonson H, Pritykin Y, Deep D, Lavallée VP, Mendoza A, Fromme R, Mazutis L, Ariyan C, Leslie C, Pe'er D, Rudensky AY (2019) Transcriptional basis of mouse and human dendritic cell heterogeneity. Cell 179(4):846–863.e824. https://doi.org/10.1016/j.cell.2019.09.035
Ziegenhain C, Vieth B, Parekh S, Reinius B, Guillaumet-Adkins A, Smets M, Leonhardt H, Heyn H, Hellmann I, Enard W (2017) Comparative analysis of single-cell RNA sequencing methods. Mol Cell 65(4):631–643.e634. https://doi.org/10.1016/j.molcel.2017.01.023
Ivanovs A, Rybtsov S, Welch L, Anderson RA, Turner ML, Medvinsky A (2011) Highly potent human hematopoietic stem cells first emerge in the intraembryonic aorta-gonad-mesonephros region. J Exp Med 208(12):2417–2427. https://doi.org/10.1084/jem.20111688
Palis J, Robertson S, Kennedy M, Wall C, Keller G (1999) Development of erythroid and myeloid progenitors in the yolk sac and embryo proper of the mouse. Develop 126(22):5073–5084
Ikawa T, Kawamoto H, Fujimoto S, Katsura Y (1999) Commitment of common T/Natural killer (NK) progenitors to unipotent T and NK progenitors in the murine fetal thymus revealed by a single progenitor assay. J Exp Med 190(11):1617–1626. https://doi.org/10.1084/jem.190.11.1617
Kawamoto H, Ohmura K, Fujimoto S, Katsura Y (1999) Emergence of T cell progenitors without B cell or myeloid differentiation potential at the earliest stage of hematopoiesis in the murine fetal liver. J Immunol 162(5):2725–2731
Res P, Spits H (1999) Developmental stages in the human thymus. Semin Immunol 11(1):39–46. https://doi.org/10.1006/smim.1998.0152
Tavian M, Hallais MF, Péault B (1999) Emergence of intraembryonic hematopoietic precursors in the pre-liver human embryo. Develop 126(4):793–803
Zeng Y, Liu C, Gong Y, Bai Z, Hou S, He J, Bian Z, Li Z, Ni Y, Yan J, Huang T, Shi H, Ma C, Chen X, Wang J, Bian L, Lan Y, Liu B, Hu H (2019) Single-cell RNA sequencing resolves spatiotemporal development of pre-thymic lymphoid progenitors and thymus organogenesis in human embryos. Immunity 51(5):930–948.e936. https://doi.org/10.1016/j.immuni.2019.09.008
Batsivari A, Rybtsov S, Souilhol C, Binagui-Casas A, Hills D, Zhao S, Travers P, Medvinsky A (2017) Understanding hematopoietic stem cell development through functional correlation of their proliferative status with the intra-aortic cluster architecture. Stem Cell Rep 8(6):1549–1562. https://doi.org/10.1016/j.stemcr.2017.04.003
Hou S, Li Z, Zheng X, Gao Y, Dong J, Ni Y, Wang X, Li Y, Ding X, Chang Z, Li S, Hu Y, Fan X, Hou Y, Wen L, Liu B, Tang F, Lan Y (2020) Embryonic endothelial evolution towards first hematopoietic stem cells revealed by single-cell transcriptomic and functional analyses. Cell Res 30(5):376–392. https://doi.org/10.1038/s41422-020-0300-2
Tavian M, Coulombel L, Luton D, Clemente HS, Dieterlen-Lièvre F, Péault B (1996) Aorta-associated CD34+ hematopoietic cells in the early human embryo. Blood 87(1):67–72
Tavian M, Robin C, Coulombel L, Péault B (2001) The human embryo, but not its yolk sac, generates lympho-myeloid stem cells: mapping multipotent hematopoietic cell fate in intraembryonic mesoderm. Immunity 15(3):487–495. https://doi.org/10.1016/s1074-7613(01)00193-5
Ivanovs A, Rybtsov S, Ng ES, Stanley EG, Elefanty AG, Medvinsky A (2017) Human haematopoietic stem cell development: from the embryo to the dish. Develop 144(13):2323–2337. https://doi.org/10.1242/dev.134866
Migliaccio G, Migliaccio AR, Petti S, Mavilio F, Russo G, Lazzaro D, Testa U, Marinucci M, Peschle C (1986) Human embryonic hemopoiesis. Kinetics of progenitors and precursors underlying the yolk sac----liver transition. J Clin Invest 78(1):51–60. https://doi.org/10.1172/jci112572
Oberlin E, Fleury M, Clay D, Petit-Cocault L, Candelier JJ, Mennesson B, Jaffredo T, Souyri M (2010) VE-cadherin expression allows identification of a new class of hematopoietic stem cells within human embryonic liver. Blood 116(22):4444–4455. https://doi.org/10.1182/blood-2010-03-272625
O'Rahilly R, Müller F (2010) Developmental stages in human embryos: revised and new measurements. Cells Tissues Organs 192(2):73–84. https://doi.org/10.1159/000289817
Charbord P, Tavian M, Humeau L, Péault B (1996) Early ontogeny of the human marrow from long bones: an immunohistochemical study of hematopoiesis and its microenvironment. Blood 87(10):4109–4119
Haynes BF, Scearce RM, Lobach DF, Hensley LL (1984) Phenotypic characterization and ontogeny of mesodermal-derived and endocrine epithelial components of the human thymic microenvironment. J Exp Med 159(4):1149–1168. https://doi.org/10.1084/jem.159.4.1149
Lobach DF, Haynes BF (1987) Ontogeny of the human thymus during fetal development. J Clin Immunol 7(2):81–97. https://doi.org/10.1007/bf00916002
Koch U, Fiorini E, Benedito R, Besseyrias V, Schuster-Gossler K, Pierres M, Manley NR, Duarte A, Macdonald HR, Radtke F (2008) Delta-like 4 is the essential, nonredundant ligand for Notch1 during thymic T cell lineage commitment. J Exp Med 205(11):2515–2523. https://doi.org/10.1084/jem.20080829
Liu C, Saito F, Liu Z, Lei Y, Uehara S, Love P, Lipp M, Kondo S, Manley N, Takahama Y (2006) Coordination between CCR7- and CCR9-mediated chemokine signals in prevascular fetal thymus colonization. Blood 108(8):2531–2539. https://doi.org/10.1182/blood-2006-05-024190
Galy A, Verma S, Bárcena A, Spits H (1993) Precursors of CD3 + CD4 + CD8+ cells in the human thymus are defined by expression of CD34. Delineation of early events in human thymic development. J Exp Med 178(2):391–401. https://doi.org/10.1084/jem.178.2.391
Rothenberg EV (2014) Transcriptional control of early T and B cell developmental choices. Annu Rev Immunol 32:283–321. https://doi.org/10.1146/annurev-immunol-032712-100024
Luc S, Luis TC, Boukarabila H, Macaulay IC, Buza-Vidas N, Bouriez-Jones T, Lutteropp M, Woll PS, Loughran SJ, Mead AJ, Hultquist A, Brown J, Mizukami T, Matsuoka S, Ferry H, Anderson K, Duarte S, Atkinson D, Soneji S, Domanski A, Farley A, Sanjuan-Pla A, Carella C, Patient R, de Bruijn M, Enver T, Nerlov C, Blackburn C, Godin I, Jacobsen SE (2012) The earliest thymic T cell progenitors sustain B cell and myeloid lineage potential. Nat Immunol 13(4):412–419. https://doi.org/10.1038/ni.2255
Allman D, Sambandam A, Kim S, Miller JP, Pagan A, Well D, Meraz A, Bhandoola A (2003) Thymopoiesis independent of common lymphoid progenitors. Nat Immunol 4(2):168–174. https://doi.org/10.1038/ni878
Luis TC, Luc S, Mizukami T, Boukarabila H, Thongjuea S, Woll PS, Azzoni E, Giustacchini A, Lutteropp M, Bouriez-Jones T, Vaidya H, Mead AJ, Atkinson D, Böiers C, Carrelha J, Macaulay IC, Patient R, Geissmann F, Nerlov C, Sandberg R, de Bruijn M, Blackburn CC, Godin I, Jacobsen SEW (2016) Initial seeding of the embryonic thymus by immune-restricted lympho-myeloid progenitors. Nat Immunol 17(12):1424–1435. https://doi.org/10.1038/ni.3576
Böiers C, Carrelha J, Lutteropp M, Luc S, Green JC, Azzoni E, Woll PS, Mead AJ, Hultquist A, Swiers G, Perdiguero EG, Macaulay IC, Melchiori L, Luis TC, Kharazi S, Bouriez-Jones T, Deng Q, Pontén A, Atkinson D, Jensen CT, Sitnicka E, Geissmann F, Godin I, Sandberg R, de Bruijn MF, Jacobsen SE (2013) Lymphomyeloid contribution of an immune-restricted progenitor emerging prior to definitive hematopoietic stem cells. Cell Stem Cell 13(5):535–548. https://doi.org/10.1016/j.stem.2013.08.012
Ramond C, Berthault C, Burlen-Defranoux O, de Sousa AP, Guy-Grand D, Vieira P, Pereira P, Cumano A (2014) Two waves of distinct hematopoietic progenitor cells colonize the fetal thymus. Nat Immunol 15(1):27–35. https://doi.org/10.1038/ni.2782
Cumano A, Berthault C, Ramond C, Petit M, Golub R, Bandeira A, Pereira P (2019) New molecular insights into immune cell development. Annu Rev Immunol 37:497–519. https://doi.org/10.1146/annurev-immunol-042718-041319
Park JE, Botting RA, Domínguez Conde C, Popescu DM, Lavaert M, Kunz DJ, Goh I, Stephenson E, Ragazzini R, Tuck E, Wilbrey-Clark A, Roberts K, Kedlian VR, Ferdinand JR, He X, Webb S, Maunder D, Vandamme N, Mahbubani KT, Polanski K, Mamanova L, Bolt L, Crossland D, de Rita F, Fuller A, Filby A, Reynolds G, Dixon D, Saeb-Parsy K, Lisgo S, Henderson D, Vento-Tormo R, Bayraktar OA, Barker RA, Meyer KB, Saeys Y, Bonfanti P, Behjati S, Clatworthy MR, Taghon T, Haniffa M, Teichmann SA (2020) A cell atlas of human thymic development defines T cell repertoire formation. Science (New York, NY) 367(6480):eaay3224. https://doi.org/10.1126/science.aay3224
Elsaid R, Meunier S, Burlen-Defranoux O, Soares-da-Silva F, Perchet T, Iturri L, Freyer L, Vieira P, Pereira P, Golub R, Bandeira A, Perdiguero EG, Cumano A (2020) A wave of embryonic bipotent T/lymphoid tissue inducer progenitors regulates the maturation of medullary thymic epithelial cells. bioRxiv:791103. https://doi.org/10.1101/791103
Ardavin C, Wu L, Li CL, Shortman K (1993) Thymic dendritic cells and T cells develop simultaneously in the thymus from a common precursor population. Nature 362(6422):761–763. https://doi.org/10.1038/362761a0
Zlotoff DA, Bhandoola A (2011) Hematopoietic progenitor migration to the adult thymus. Ann N Y Acad Sci 1217:122–138. https://doi.org/10.1111/j.1749-6632.2010.05881.x
Chi AW, Bell JJ, Zlotoff DA, Bhandoola A (2009) Untangling the T branch of the hematopoiesis tree. Curr Opin Immunol 21(2):121–126. https://doi.org/10.1016/j.coi.2009.01.012
Yui MA, Rothenberg EV (2014) Developmental gene networks: a triathlon on the course to T cell identity. Nat Rev Immunol 14(8):529–545. https://doi.org/10.1038/nri3702
Bárcena A, Muench MO, Roncarolo MG, Spits H (1995) Tracing the expression of CD7 and other antigens during T- and myeloid-cell differentiation in the human fetal liver and thymus. Leuk Lymphoma 17(1-2):1–11. https://doi.org/10.3109/10428199509051697
Bárcena A, Muench MO, Galy AH, Cupp J, Roncarolo MG, Phillips JH, Spits H (1993) Phenotypic and functional analysis of T-cell precursors in the human fetal liver and thymus: CD7 expression in the early stages of T- and myeloid-cell development. Blood 82(11):3401–3414
Weerkamp F, Baert MR, Brugman MH, Dik WA, de Haas EF, Visser TP, de Groot CJ, Wagemaker G, van Dongen JJ, Staal FJ (2006) Human thymus contains multipotent progenitors with T/B lymphoid, myeloid, and erythroid lineage potential. Blood 107(8):3131–3137. https://doi.org/10.1182/blood-2005-08-3412
Moretti FA, Klapproth S, Ruppert R, Margraf A, Weber J, Pick R, Scheiermann C, Sperandio M, Fässler R, Moser M (2018) Differential requirement of kindlin-3 for T cell progenitor homing to the non-vascularized and vascularized thymus. eLife 7:e35816. https://doi.org/10.7554/eLife.35816
Zhou W, Yui MA, Williams BA, Yun J, Wold BJ, Cai L, Rothenberg EV (2019) Single-cell analysis reveals regulatory gene expression dynamics leading to lineage commitment in early T cell development. Cell Syst 9(4):321–337.e329. https://doi.org/10.1016/j.cels.2019.09.008
Ivanovs A, Rybtsov S, Anderson RA, Turner ML, Medvinsky A (2014) Identification of the niche and phenotype of the first human hematopoietic stem cells. Stem Cell Rep 2(4):449–456. https://doi.org/10.1016/j.stemcr.2014.02.004
Nishikawa SI, Nishikawa S, Kawamoto H, Yoshida H, Kizumoto M, Kataoka H, Katsura Y (1998) In vitro generation of lymphohematopoietic cells from endothelial cells purified from murine embryos. Immunity 8(6):761–769. https://doi.org/10.1016/s1074-7613(00)80581-6
Guo R, Hu F, Weng Q, Lv C, Wu H, Liu L, Li Z, Zeng Y, Bai Z, Zhang M, Liu Y, Liu X, Xia C, Wang T, Zhou P, Wang K, Dong Y, Luo Y, Zhang X, Guan Y, Geng Y, Du J, Li Y, Lan Y, Chen J, Liu B, Wang J (2020) Guiding T lymphopoiesis from pluripotent stem cells by defined transcription factors. Cell Res 30(1):21–33. https://doi.org/10.1038/s41422-019-0251-7
Joachims ML, Chain JL, Hooker SW, Knott-Craig CJ, Thompson LF (2006) Human alpha beta and gamma delta thymocyte development: TCR gene rearrangements, intracellular TCR beta expression, and gamma delta developmental potential--differences between men and mice. J Immunol 176(3):1543–1552. https://doi.org/10.4049/jimmunol.176.3.1543
La Cava A (2019) Human T cell repertoire: what happens in thymus does not stay in thymus. J Clin Invest 129(6):2195–2197. https://doi.org/10.1172/jci128371
Carter JA, Preall JB, Grigaityte K, Goldfless SJ, Briggs AW, Vigneault F, Atwal GS (2018) T-cell receptor αβ chain pairing is associated with CD4+ and CD8+ lineage specification. bioRxiv 1:293852. https://doi.org/10.1101/293852
Khosravi-Maharlooei M, Obradovic A, Misra A, Motwani K, Holzl M, Seay HR, DeWolf S, Nauman G, Danzl N, Li H, Ho SH, Winchester R, Shen Y, Brusko TM, Sykes M (2019) Crossreactive public TCR sequences undergo positive selection in the human thymic repertoire. J Clin Invest 129(6):2446–2462. https://doi.org/10.1172/jci124358
Cherrier DE, Serafini N, Di Santo JP (2018) Innate lymphoid cell development: a T cell perspective. Immunity 48(6):1091–1103. https://doi.org/10.1016/j.immuni.2018.05.010
Vivier E, Artis D, Colonna M, Diefenbach A, Di Santo JP, Eberl G, Koyasu S, Locksley RM, McKenzie ANJ, Mebius RE, Powrie F, Spits H (2018) Innate lymphoid cells: 10 years on. Cell 174(5):1054–1066. https://doi.org/10.1016/j.cell.2018.07.017
Spits H, Artis D, Colonna M, Diefenbach A, Di Santo JP, Eberl G, Koyasu S, Locksley RM, McKenzie AN, Mebius RE, Powrie F, Vivier E (2013) Innate lymphoid cells--a proposal for uniform nomenclature. Nat Rev Immunol 13(2):145–149. https://doi.org/10.1038/nri3365
Rankin L, Groom J, Mielke LA, Seillet C, Belz GT (2013) Diversity, function, and transcriptional regulation of gut innate lymphocytes. Front Immunol 4:22. https://doi.org/10.3389/fimmu.2013.00022
Yu X, Wang Y, Deng M, Li Y, Ruhn KA, Zhang CC, Hooper LV (2014) The basic leucine zipper transcription factor NFIL3 directs the development of a common innate lymphoid cell precursor. eLife 3:e04406. https://doi.org/10.7554/eLife.04406
Xu W, Domingues RG, Fonseca-Pereira D, Ferreira M, Ribeiro H, Lopez-Lastra S, Motomura Y, Moreira-Santos L, Bihl F, Braud V, Kee B, Brady H, Coles MC, Vosshenrich C, Kubo M, Di Santo JP, Veiga-Fernandes H (2015) NFIL3 orchestrates the emergence of common helper innate lymphoid cell precursors. Cell Rep 10(12):2043–2054. https://doi.org/10.1016/j.celrep.2015.02.057
Yang Q, Li F, Harly C, Xing S, Ye L, Xia X, Wang H, Wang X, Yu S, Zhou X, Cam M, Xue HH, Bhandoola A (2015) TCF-1 upregulation identifies early innate lymphoid progenitors in the bone marrow. Nat Immunol 16(10):1044–1050. https://doi.org/10.1038/ni.3248
Seehus CR, Aliahmad P, de la Torre B, Iliev ID, Spurka L, Funari VA, Kaye J (2015) The development of innate lymphoid cells requires TOX-dependent generation of a common innate lymphoid cell progenitor. Nat Immunol 16(6):599–608. https://doi.org/10.1038/ni.3168
Seillet C, Rankin LC, Groom JR, Mielke LA, Tellier J, Chopin M, Huntington ND, Belz GT, Carotta S (2014) Nfil3 is required for the development of all innate lymphoid cell subsets. J Exp Med 211(9):1733–1740. https://doi.org/10.1084/jem.20140145
Delconte RB, Shi W, Sathe P, Ushiki T, Seillet C, Minnich M, Kolesnik TB, Rankin LC, Mielke LA, Zhang JG, Busslinger M, Smyth MJ, Hutchinson DS, Nutt SL, Nicholson SE, Alexander WS, Corcoran LM, Vivier E, Belz GT, Carotta S, Huntington ND (2016) The helix-loop-helix protein ID2 governs NK cell fate by tuning their sensitivity to interleukin-15. Immunity 44(1):103–115. https://doi.org/10.1016/j.immuni.2015.12.007
Zook EC, Li ZY, Xu Y, de Pooter RF, Verykokakis M, Beaulieu A, Lasorella A, Maienschein-Cline M, Sun JC, Sigvardsson M, Kee BL (2018) Transcription factor ID2 prevents E proteins from enforcing a naïve T lymphocyte gene program during NK cell development. Sci Immunol 3(22). https://doi.org/10.1126/sciimmunol.aao2139
Hoyler T, Klose CS, Souabni A, Turqueti-Neves A, Pfeifer D, Rawlins EL, Voehringer D, Busslinger M, Diefenbach A (2012) The transcription factor GATA-3 controls cell fate and maintenance of type 2 innate lymphoid cells. Immunity 37(4):634–648. https://doi.org/10.1016/j.immuni.2012.06.020
Yagi R, Zhong C, Northrup DL, Yu F, Bouladoux N, Spencer S, Hu G, Barron L, Sharma S, Nakayama T, Belkaid Y, Zhao K, Zhu J (2014) The transcription factor GATA3 is critical for the development of all IL-7Rα-expressing innate lymphoid cells. Immunity 40(3):378–388. https://doi.org/10.1016/j.immuni.2014.01.012
Constantinides MG, McDonald BD, Verhoef PA, Bendelac A (2014) A committed precursor to innate lymphoid cells. Nature 508(7496):397–401. https://doi.org/10.1038/nature13047
Ebihara T, Song C, Ryu SH, Plougastel-Douglas B, Yang L, Levanon D, Groner Y, Bern MD, Stappenbeck TS, Colonna M, Egawa T, Yokoyama WM (2015) Runx3 specifies lineage commitment of innate lymphoid cells. Nat Immunol 16(11):1124–1133. https://doi.org/10.1038/ni.3272
Etzensperger R, Kadakia T, Tai X, Alag A, Guinter TI, Egawa T, Erman B, Singer A (2017) Identification of lineage-specifying cytokines that signal all CD8(+)-cytotoxic-lineage-fate 'decisions' in the thymus. Nat Immunol 18(11):1218–1227. https://doi.org/10.1038/ni.3847
Klose CSN, Flach M, Möhle L, Rogell L, Hoyler T, Ebert K, Fabiunke C, Pfeifer D, Sexl V, Fonseca-Pereira D, Domingues RG, Veiga-Fernandes H, Arnold SJ, Busslinger M, Dunay IR, Tanriver Y, Diefenbach A (2014) Differentiation of type 1 ILCs from a common progenitor to all helper-like innate lymphoid cell lineages. Cell 157(2):340–356. https://doi.org/10.1016/j.cell.2014.03.030
Daussy C, Faure F, Mayol K, Viel S, Gasteiger G, Charrier E, Bienvenu J, Henry T, Debien E, Hasan UA, Marvel J, Yoh K, Takahashi S, Prinz I, de Bernard S, Buffat L, Walzer T (2014) T-bet and Eomes instruct the development of two distinct natural killer cell lineages in the liver and in the bone marrow. J Exp Med 211(3):563–577. https://doi.org/10.1084/jem.20131560
Califano D, Cho JJ, Uddin MN, Lorentsen KJ, Yang Q, Bhandoola A, Li H, Avram D (2015) Transcription factor Bcl11b controls identity and function of mature type 2 innate lymphoid cells. Immunity 43(2):354–368. https://doi.org/10.1016/j.immuni.2015.07.005
Wong SH, Walker JA, Jolin HE, Drynan LF, Hams E, Camelo A, Barlow JL, Neill DR, Panova V, Koch U, Radtke F, Hardman CS, Hwang YY, Fallon PG, McKenzie AN (2012) Transcription factor RORα is critical for nuocyte development. Nat Immunol 13(3):229–236. https://doi.org/10.1038/ni.2208
Walker JA, Oliphant CJ, Englezakis A, Yu Y, Clare S, Rodewald HR, Belz G, Liu P, Fallon PG, McKenzie AN (2015) Bcl11b is essential for group 2 innate lymphoid cell development. J Exp Med 212(6):875–882. https://doi.org/10.1084/jem.20142224
KleinJan A, Klein Wolterink RG, Levani Y, de Bruijn MJ, Hoogsteden HC, van Nimwegen M, Hendriks RW (2014) Enforced expression of Gata3 in T cells and group 2 innate lymphoid cells increases susceptibility to allergic airway inflammation in mice. J Immunol 192(4):1385–1394. https://doi.org/10.4049/jimmunol.1301888
Cording S, Medvedovic J, Cherrier M, Eberl G (2014) Development and regulation of RORγt(+) innate lymphoid cells. FEBS Lett 588(22):4176–4181. https://doi.org/10.1016/j.febslet.2014.03.034
Buonocore S, Ahern PP, Uhlig HH, Ivanov II, Littman DR, Maloy KJ, Powrie F (2010) Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology. Nature 464(7293):1371–1375. https://doi.org/10.1038/nature08949
Sanos SL, Bui VL, Mortha A, Oberle K, Heners C, Johner C, Diefenbach A (2009) RORgammat and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells. Nat Immunol 10(1):83–91. https://doi.org/10.1038/ni.1684
Satoh-Takayama N, Vosshenrich CA, Lesjean-Pottier S, Sawa S, Lochner M, Rattis F, Mention JJ, Thiam K, Cerf-Bensussan N, Mandelboim O, Eberl G, Di Santo JP (2008) Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense. Immunity 29(6):958–970. https://doi.org/10.1016/j.immuni.2008.11.001
Male V, Nisoli I, Kostrzewski T, Allan DS, Carlyle JR, Lord GM, Wack A, Brady HJ (2014) The transcription factor E4bp4/Nfil3 controls commitment to the NK lineage and directly regulates Eomes and Id2 expression. J Exp Med 211(4):635–642. https://doi.org/10.1084/jem.20132398
Nagasawa M, Germar K, Blom B, Spits H (2017) Human CD5(+) innate lymphoid cells are functionally immature and their development from CD34(+) progenitor cells is regulated by Id2. Front Immunol 8:1047. https://doi.org/10.3389/fimmu.2017.01047
Wang HC, Qian L, Zhao Y, Mengarelli J, Adrianto I, Montgomery CG, Urban JF Jr, Fung KM, Sun XH (2017) Downregulation of E protein activity augments an ILC2 differentiation program in the thymus. J Immunol 198(8):3149–3156. https://doi.org/10.4049/jimmunol.1602009
Qian L, Bajana S, Georgescu C, Peng V, Wang HC, Adrianto I, Colonna M, Alberola-Ila J, Wren JD, Sun XH (2019) Suppression of ILC2 differentiation from committed T cell precursors by E protein transcription factors. J Exp Med 216(4):884–899. https://doi.org/10.1084/jem.20182100
Boyden LM, Lewis JM, Barbee SD, Bas A, Girardi M, Hayday AC, Tigelaar RE, Lifton RP (2008) Skint1, the prototype of a newly identified immunoglobulin superfamily gene cluster, positively selects epidermal gammadelta T cells. Nat Genet 40(5):656–662. https://doi.org/10.1038/ng.108
Jones R, Cosway EJ, Willis C, White AJ, Jenkinson WE, Fehling HJ, Anderson G, Withers DR (2018) Dynamic changes in intrathymic ILC populations during murine neonatal development. Eur J Immunol 48(9):1481–1491. https://doi.org/10.1002/eji.201847511
Nitta T, Tsutsumi M, Nitta S, Muro R, Suzuki EC, Nakano K, Tomofuji Y, Sawa S, Okamura T, Penninger JM, Takayanagi H (2020) Fibroblasts as a source of self-antigens for central immune tolerance. Nat Immunol 21(10):1172–1180. https://doi.org/10.1038/s41590-020-0756-8
Allan DS, Kirkham CL, Aguilar OA, Qu LC, Chen P, Fine JH, Serra P, Awong G, Gommerman JL, Zúñiga-Pflücker JC, Carlyle JR (2015) An in vitro model of innate lymphoid cell function and differentiation. Mucosal Immunol 8(2):340–351. https://doi.org/10.1038/mi.2014.71
Onder L, Mörbe U, Pikor N, Novkovic M, Cheng HW, Hehlgans T, Pfeffer K, Becher B, Waisman A, Rülicke T, Gommerman J, Mueller CG, Sawa S, Scandella E, Ludewig B (2017) Lymphatic endothelial cells control initiation of lymph node organogenesis. Immunity 47(1):80–92.e84. https://doi.org/10.1016/j.immuni.2017.05.008
Hu H, Brittain GC, Chang JH, Puebla-Osorio N, Jin J, Zal A, Xiao Y, Cheng X, Chang M, Fu YX, Zal T, Zhu C, Sun SC (2013) OTUD7B controls non-canonical NF-κB activation through deubiquitination of TRAF3. Nature 494(7437):371–374. https://doi.org/10.1038/nature11831
Kernfeld EM, Genga RMJ, Neherin K, Magaletta ME, Xu P, Maehr R (2018) A single-cell transcriptomic atlas of thymus organogenesis resolves cell types and developmental maturation. Immunity 48(6):1258–1270.e1256. https://doi.org/10.1016/j.immuni.2018.04.015
Godfrey DI, Uldrich AP, McCluskey J, Rossjohn J, Moody DB (2015) The burgeoning family of unconventional T cells. Nat Immunol 16(11):1114–1123. https://doi.org/10.1038/ni.3298
Lee M, Lee E, Han SK, Choi YH, D-i K, Choi H, Lee K, Park ES, Rha M-S, Joo DJ, Shin E-C, Kim S, Kim JK, Lee YJ (2020) Single-cell RNA sequencing identifies shared differentiation paths of mouse thymic innate T cells. Nat Commun 11(1):4367. https://doi.org/10.1038/s41467-020-18155-8
Gordon J, Patel SR, Mishina Y, Manley NR (2010) Evidence for an early role for BMP4 signaling in thymus and parathyroid morphogenesis. Dev Biol 339(1):141–154. https://doi.org/10.1016/j.ydbio.2009.12.026
Bennett AR, Farley A, Blair NF, Gordon J, Sharp L, Blackburn CC (2002) Identification and characterization of thymic epithelial progenitor cells. Immunity 16(6):803–814. https://doi.org/10.1016/s1074-7613(02)00321-7
Rossi SW, Jenkinson WE, Anderson G, Jenkinson EJ (2006) Clonal analysis reveals a common progenitor for thymic cortical and medullary epithelium. Nature 441(7096):988–991. https://doi.org/10.1038/nature04813
Balciunaite G, Keller MP, Balciunaite E, Piali L, Zuklys S, Mathieu YD, Gill J, Boyd R, Sussman DJ, Holländer GA (2002) Wnt glycoproteins regulate the expression of FoxN1, the gene defective in nude mice. Nat Immunol 3(11):1102–1108. https://doi.org/10.1038/ni850
Bleul CC, Boehm T (2005) BMP signaling is required for normal thymus development. J Immunol 175(8):5213–5221. https://doi.org/10.4049/jimmunol.175.8.5213
Heinonen KM, Vanegas JR, Brochu S, Shan J, Vainio SJ, Perreault C (2011) Wnt4 regulates thymic cellularity through the expansion of thymic epithelial cells and early thymic progenitors. Blood 118(19):5163–5173. https://doi.org/10.1182/blood-2011-04-350553
Nehls M, Kyewski B, Messerle M, Waldschütz R, Schüddekopf K, Smith AJ, Boehm T (1996) Two genetically separable steps in the differentiation of thymic epithelium. Science (New York, NY) 272(5263):886–889. https://doi.org/10.1126/science.272.5263.886
Cowan JE, Malin J, Zhao Y, Seedhom MO, Harly C, Ohigashi I, Kelly M, Takahama Y, Yewdell JW, Cam M, Bhandoola A (2019) Myc controls a distinct transcriptional program in fetal thymic epithelial cells that determines thymus growth. Nat Commun 10(1):5498. https://doi.org/10.1038/s41467-019-13465-y
Bornstein C, Nevo S, Giladi A, Kadouri N, Pouzolles M, Gerbe F, David E, Machado A, Chuprin A, Tóth B, Goldberg O, Itzkovitz S, Taylor N, Jay P, Zimmermann VS, Abramson J, Amit I (2018) Single-cell mapping of the thymic stroma identifies IL-25-producing tuft epithelial cells. Nature 559(7715):622–626. https://doi.org/10.1038/s41586-018-0346-1
Shen H, Ji Y, Xiong Y, Kim H, Zhong X, Jin MG, Shah YM, Omary MB, Liu Y, Qi L, Rui L (2019) Medullary thymic epithelial NF-kB-inducing kinase (NIK)/IKKα pathway shapes autoimmunity and liver and lung homeostasis in mice. Proc Natl Acad Sci U S A 116(38):19090–19097. https://doi.org/10.1073/pnas.1901056116
Onder L, Nindl V, Scandella E, Chai Q, Cheng HW, Caviezel-Firner S, Novkovic M, Bomze D, Maier R, Mair F, Ledermann B, Becher B, Waisman A, Ludewig B (2015) Alternative NF-κB signaling regulates mTEC differentiation from podoplanin-expressing precursors in the cortico-medullary junction. Eur J Immunol 45(8):2218–2231. https://doi.org/10.1002/eji.201545677
Baik S, Sekai M, Hamazaki Y, Jenkinson WE, Anderson G (2016) Relb acts downstream of medullary thymic epithelial stem cells and is essential for the emergence of RANK(+) medullary epithelial progenitors. Eur J Immunol 46(4):857–862. https://doi.org/10.1002/eji.201546253
Baran-Gale J, Morgan MD, Maio S, Dhalla F, Calvo-Asensio I, Deadman ME, Handel AE, Maynard A, Chen S, Green F, Sit RV, Neff NF, Darmanis S, Tan W, May AP, Marioni JC, Ponting CP, Holländer GA (2020) Ageing compromises mouse thymus function and remodels epithelial cell differentiation. eLife 9:e56221. https://doi.org/10.7554/eLife.56221
Dhalla F, Baran-Gale J, Maio S, Chappell L, Holländer GA, Ponting CP (2020) Biologically indeterminate yet ordered promiscuous gene expression in single medullary thymic epithelial cells. EMBO J 39(1):e101828. https://doi.org/10.15252/embj.2019101828
Sansom SN, Shikama-Dorn N, Zhanybekova S, Nusspaumer G, Macaulay IC, Deadman ME, Heger A, Ponting CP, Holländer GA (2014) Population and single-cell genomics reveal the Aire dependency, relief from Polycomb silencing, and distribution of self-antigen expression in thymic epithelia. Genome Res 24(12):1918–1931. https://doi.org/10.1101/gr.171645.113
Brennecke P, Reyes A, Pinto S, Rattay K, Nguyen M, Küchler R, Huber W, Kyewski B, Steinmetz LM (2015) Single-cell transcriptome analysis reveals coordinated ectopic gene-expression patterns in medullary thymic epithelial cells. Nat Immunol 16(9):933–941. https://doi.org/10.1038/ni.3246
Herzig Y, Nevo S, Bornstein C, Brezis MR, Ben-Hur S, Shkedy A, Eisenberg-Bord M, Levi B, Delacher M, Goldfarb Y, David E, Weinberger L, Viukov S, Ben-Dor S, Giraud M, Hanna JH, Breiling A, Lyko F, Amit I, Feuerer M, Abramson J (2017) Transcriptional programs that control expression of the autoimmune regulator gene Aire. Nat Immunol 18(2):161–172. https://doi.org/10.1038/ni.3638
Mathis D, Benoist C (2007) A decade of AIRE. Nat Rev Immunol 7(8):645–650. https://doi.org/10.1038/nri2136
Lowe RM, Li H, Hsu HC, Mountz JD (2018) Regulation of negative selection in the thymus by cytokines: novel role of IL-23 to regulate RORγt. In: Soboloff J, Kappes DJ (eds) Signaling Mechanisms Regulating T Cell Diversity and Function. CRC Press/Taylor & Francis © 2017 Taylor & Francis Group, LLC., Boca Raton (FL), pp 41–52. https://doi.org/10.1201/9781315371689-3
Bansal K, Yoshida H, Benoist C, Mathis D (2017) The transcriptional regulator Aire binds to and activates super-enhancers. Nat Immunol 18(3):263–273. https://doi.org/10.1038/ni.3675