Giới hạn trên tối tiểu của sai số cắt của thuật toán xấp xỉ ma trận hạng thấp sử dụng phân rã QR có chốt
Tóm tắt
Từ khóa
Tài liệu tham khảo
Businger, P., Golub, G.H.: Linear least squares solutions by householder transformations. Numer. Math. 7, 269–276 (1965)
Chandrasekaran, S., Ipsen, I.C.F.: On rank-revealing factorisations. SIAM J. Matrix Anal. Appl. 15(2), 592–622 (1994)
Drmač, Z., Gugercin, S.: A new selection operator for the discrete empirical interpolation method-improved a priori error bound and extensions. SIAM J. Sci. Comput. 38(2), A631–A648 (2016)
Faddeev, D.K., Kublanovskaya, V.N., Faddeeva, V.N.: Solution of linear algebraic systems with rectangular matrices. Trudy Mat. Inst. Steklov. 96, 76–92 (1968)
Golub, G.H.: Numerical methods for solving linear least squares problems. Numer. Math. 7, 206–216 (1965)
Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. The Johns Hopkins University Press, Baltimore (1996)
Hong, Y.P., Pan, C.-T.: Rank-revealing QR factorizations and the singular value decomposition. Math. Comput. 58, 213–232 (1992)
Kawamura, H.: Analysis of truncation error of matrix low rank approximation algorithm using QR decomposition with pivot selection. Trans. Jpn. Soc. Ind. Appl. Math. 30(2), 163–176 (2020)
Khoromskij, B.N.: Tensors-structured numerical methods in scientific computing: survey on recent advances. Chemom. Intell. Lab. Syst. 110, 1–19 (2012)
Kumar, N.K., Schneider, J.: Literature survey on low rank approximation of matrices. Linear Multilinear Algebra 65(11), 2212–2244 (2017)