Least squares collocation and regularization

Reiner Rummel1, Klaus Schwarz2, M Gerstl3
1Bayerische Akademie der Wissenschaften und SFB 78, Bayerische Kommission für die Internationale Erdmessung, 8 München
2Department of Surveying Engineering, University of New Brunswick, Fredericton, New Brunswick
3Abt. 1, und SFB 78, 8, Deutsches Geodätisches Forschungsinstitut, 22, München

Tóm tắt

Từ khóa


Tài liệu tham khảo

A. BJERHAMMAR: On the Discrete Boundary Value Problem in Physical Geodesy. The Royal Institute of Technology, Division of Geodesy, Stockholm, 1973.

J.W. HILGERS: On the Equivalence of Regularization and Certain Reproducing Kernel Hilbert Space Approaches for Solving First Kind Problems. SIAM J. Numer. Anal., 13, 2, 172–184, 1976.

D.D. JACKSON: Interpretation of Inaccurate, Insufficient and Inconsistent Data. Geophys. J.R. astr. Soc. 28, 97–109, 1972.

T. KRARUP: A Contribution to the Mathematical Foundation of Physical Geodesy, Geodaetisk Institut, 44, København, 1969.

C. LANCZOS: Linear Differential Operators, London, 1961.

M.M. LAVRENTIEV: Some Improperly Posed Problems of Mathematical Physics, Berlin, 1967.

P. MEISSL: A Study of Covariance Functions Related to the Earth's Disturbing Potential. Dept. Geodetic Science, 151, Ohio State University, Columbus, 1971.

P.B. LIEBELT: An Introduction to Optimal Estimation, Reading, 1967.

H. MORITZ: Advanced Least-Squares Methods, Department of Geodetic Science, 175, Ohio State University, Columbus, 1972.

H. MORITZ: Least-Squares Collocation as a Gravitational Inverse Problem. Dept. Geodetic Science, 249, Ohio State University, Columbus, 1976.

M.Z. NASHED: Approximate Regularized Solutions to Improperly Posed Linear Integral and Operator Equations, in: Constructive and Computational Methods for Integral and Differential Equations, Lecture Notes in Mathematics, 430, 289–332, 1974.

D.L. PHILLIPS: A Technique for the Numerical Solution of Certain Integral Equations of the First Kind. J. Ass. Compt. Mach., 9, 84–97, 1962.

R.H. RAPP: Gravity Anomaly Recovery from Satellite Altimetry Data Using Least Squares Collocation Techniques. Dept. Geodetic Science, 220, Ohio State University, Columbus, 1974.

R. RUMMEL, D.P. HAJELA, R.H. RAPP: Recovery of Mean Gravity Anomalies from Satellite-Satellite Range Rate Data Using Least Squares Collocation, Dept. Geodetic Science, 248, Ohio State University, Columbus, 1976.

R. RUMMEL, R.H. RAPP: Undulation and Anomaly Estimation Using GEOS-3 Altimeter Data without Precise Satellite Orbits, Bulletin Géodésique, 51, 1, 73–88, 1977.

R. RUMMEL: A Model Comparison in Least Squares Collocation. Dept. Geodetic Science, 238, Ohio State University, Columbus, 1976.

K.P. SCHWARZ: Numerische Untersuchungen zur Schwerefortsetzung, Deutsche Geodätische Kommission, C-171, München, 1971.

K.P. SCHWARZ: Geodetic Accuracies Obtainable from Measurements of First and Second Order Gravitational Gradients. Dept. Geodetic Science, 242, Ohio State University, Columbus, 1976.

K.P. SCHWARZ: Geodetic Improperly Posed Problems and their Regularization. Lecture Notes of the Second Int. School of Advanced Geodesy, Erice, 1978.

A.N. TIKHONOV: Regularization of Incorrectly Posed Problems. Soviet Math. Dokl., 4, 1624–1627, 1963.

C.C. TSCHERNING, R.H. RAPP: Closed Covariance Expressions for Gravity Anomalies, Geoid Undulations, and Deflections of the Vertical Implied by Anomaly Degree Variances. Dept. Geodetic Science, 208, Ohio State University, Columbus, 1974.

V.F. TURCHIN, V.P. KOZLOV, M.S. MALKEVICH: The Use of Mathematical-Statistics Methods in the Solution of Incorrectly Posed Problems, Soviet Physics, Uspekhi, 13, 6, 681–840, 1971.