Least squares after model selection in high-dimensional sparse models
Tóm tắt
Từ khóa
Tài liệu tham khảo
[19] Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. <i>J. Roy. Statist. Soc. Ser. B</i> <b>58</b> 267–288.
[27] Zhao, P. and Yu, B. (2006). On model selection consistency of Lasso. <i>J. Mach. Learn. Res.</i> <b>7</b> 2541–2563.
[9] Candes, E. and Tao, T. (2007). The Dantzig selector: Statistical estimation when $p$ is much larger than $n$. <i>Ann. Statist.</i> <b>35</b> 2313–2351.
[1] Belloni, A. and Chernozhukov, V. (2011). Supplement to “$\ell_{1}$-penalized quantile regression in high-dimensional sparse models.” <a href="DOI:10.1214/10-AOS827SUPP">DOI:10.1214/10-AOS827SUPP</a>.
[2] Belloni, A. and Chernozhukov, V. (2012). Supplement to “Least squares after model selection in high-dimensional sparse models.” <a href="DOI:10.3150/11-BEJ410SUPP">DOI:10.3150/11-BEJ410SUPP</a>.
[3] Belloni, A. and Chernozhukov, V. (2011). $\ell_{1}$-penalized quantile regression in high-dimensional sparse models. <i>Ann. Statist.</i> <b>39</b> 82–130.
[4] Bickel, P.J., Ritov, Y. and Tsybakov, A.B. (2009). Simultaneous analysis of lasso and Dantzig selector. <i>Ann. Statist.</i> <b>37</b> 1705–1732.
[5] Bunea, F. (2008). Consistent selection via the Lasso for high-dimensional approximating models. In <i>IMS Lecture Notes Monograph Series</i> <b>123</b> 123–137.
[6] Bunea, F., Tsybakov, A.B. and Wegkamp, M.H. (2006). Aggregation and sparsity via $l_{1}$ penalized least squares. In <i>Learning Theory. Lecture Notes in Computer Science</i> <b>4005</b> 379–391. Berlin: Springer.
[7] Bunea, F., Tsybakov, A.B. and Wegkamp, M. (2007). Sparsity oracle inequalities for the Lasso. <i>Electron. J. Stat.</i> <b>1</b> 169–194.
[8] Bunea, F., Tsybakov, A.B. and Wegkamp, M.H. (2007). Aggregation for Gaussian regression. <i>Ann. Statist.</i> <b>35</b> 1674–1697.
[11] Fan, J. and Lv, J. (2008). Sure independence screening for ultrahigh dimensional feature space. <i>J. R. Stat. Soc. Ser. B Stat. Methodol.</i> <b>70</b> 849–911.
[12] Koltchinskii, V. (2009). Sparsity in penalized empirical risk minimization. <i>Ann. Inst. Henri Poincaré Probab. Stat.</i> <b>45</b> 7–57.
[13] Lounici, K. (2008). Sup-norm convergence rate and sign concentration property of Lasso and Dantzig estimators. <i>Electron. J. Stat.</i> <b>2</b> 90–102.
[16] Meinshausen, N. and Yu, B. (2009). Lasso-type recovery of sparse representations for high-dimensional data. <i>Ann. Statist.</i> <b>37</b> 246–270.
[17] Rosenbaum, M. and Tsybakov, A.B. (2010). Sparse recovery under matrix uncertainty. <i>Ann. Statist.</i> <b>38</b> 2620–2651.
[18] Rudelson, M. and Vershynin, R. (2008). On sparse reconstruction from Fourier and Gaussian measurements. <i>Comm. Pure Appl. Math.</i> <b>61</b> 1025–1045.
[22] van de Geer, S.A. (2008). High-dimensional generalized linear models and the lasso. <i>Ann. Statist.</i> <b>36</b> 614–645.
[24] Wainwright, M.J. (2009). Sharp thresholds for high-dimensional and noisy sparsity recovery using $\ell_{1}$-constrained quadratic programming (Lasso). <i>IEEE Trans. Inform. Theory</i> <b>55</b> 2183–2202.
[26] Zhang, C.H. and Huang, J. (2008). The sparsity and bias of the LASSO selection in high-dimensional linear regression. <i>Ann. Statist.</i> <b>36</b> 1567–1594.
[10] Efromovich, S. (1999). <i>Nonparametric Curve Estimation</i>: <i>Methods</i>, <i>Theory</i>, <i>and Applications. Springer Series in Statistics</i>. New York: Springer.
[14] Lounici, K., Pontil, M., Tsybakov, A.B. and van de Geer, S. (2009). Taking advantage of sparsity in multi-task learning. In <i>Proceedings of the</i> 22<i>nd Annual Conference on Learning Theory</i> (<i>COLT</i> 2009) 73–82. Omnipress.
[15] Lounici, K., Pontil, M., Tsybakov, A.B. and van de Geer, S. (2012). Oracle inequalities and optimal inference under group sparsity. <i>Ann. Statist.</i> To appear.
[20] Tsybakov, A.B. (2008). <i>Introduction to Nonparametric Estimation</i>. Berlin: Springer.
[21] van de Geer, S.A. (2000). <i>Empirical Processes in M-Estimation</i>. Cambridge: Cambridge Univ. Press.
[23] van der Vaart, A.W. and Wellner, J.A. (1996). <i>Weak Convergence and Empirical Processes. Springer Series in Statistics</i>. New York: Springer.
[25] Wasserman, L. (2006). <i>All of Nonparametric Statistics. Springer Texts in Statistics</i>. New York: Springer.