Least-squares Galerkin procedure for second-order hyperbolic equations
Tóm tắt
Từ khóa
Tài liệu tham khảo
G. A. Baker, Error estimates for finite element methods for second order hyperbolic equations, SIAM Journal on Numerical Analysis, 1976, 13(4): 564–576.
Y. R. Yuan and H. Wang, Error estimates for the finite element methods for nonlinear hyperbolic equations, Journal of Systems Science and Mathematical Science (in Chinese), 1985, 5(3): 161–171.
Y. R. Yuan and H. Wang, The discrete-time finite element methods for nonlinear hyperbolic equations and their theoretical analysis, Journal of Computational Mathematics, 1988, 6(3): 193–204.
L. C. Cowsar, T. F. Dupont, and M. F. Wheeler, A priori estimates for mixed finite element methods for the wave equations, Computer Methods in Applied Mechanics and Engineering, 1990, 82(1–3): 205–222.
L. C. Cowsar, T. F. Dupont, and M. F. Wheeler, A priori estimates for mixed finite element approximations of second-order hyperbolic equations with absorbing boundary conditions, SIAM Journal on Numerical Analysis, 1996, 33(2): 492–504.
Y. P. Chen and Y. Q. Huang, The full-discrete mixed finite element methods for nonlinear hyperbolic equations, Communications in Nonlinear Science and Numerical Simulations, 1998, 3(3): 152–155.
O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flows, Gordon and Breach, London, 1969.
I. Babuśka, The finite element method with Lagrangian multipliers, Numerische Mathematik, 1973, 20(3): 179–192.
F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, RAIRO Anal. Numer., 1974, 8(R-2): 129–151.
Z. Cai, R. Lazarov, T. A. Manteuffel, and S. F. MicCormick, First-order system least squares for second-order partial differential equations II, SIAM Journal on Numerical Analysis, 1997, 34(2): 425–454.
A. Pehlivanov, G. F. Carey, and D. Lazarov, Least-squares mixed finite elements for second-order elliptic problems, SIAM Journal on Numerical Analysis, 1994, 31(5): 1368–1377.
P. Bochev, Z. Cai, T. A. Manteuffel, and S. F. McCormick, Analysis of velocity-flux first-order system least-squares principles for the Navier-Stokes equations, SIAM Journal on Numerical Analysis, 1998, 35(3): 990–1009.
D. P. Yang, Some least-squares Galerkin procedures for first-order time-dependent convectiondiffusion system, Computer Methods in Applied Mechanics and Engineering, 1999, 180(1–2): 81–95.
Z. Cai, T. A. Manteuffel, and S. F. McCormick, First-order system least squares for the Stokes equations with application to linear elasticity, SIAM Journal on Numerical Analysis, 1997, 34(5): 1727–1741.
R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.
P. A. Raviart and J. M. Thomas, A mixed finite element method for 2nd order elliptic problems, Mathematical Aspects of Finite Element Methods, Lecture Notes in Mathematics, Springer, Berlin, 1977, (606): 292–315.
P. G. Ciarlet, Finite Element Methods for Elliptic Problems, North-Holland, New York, 1978.
Z. Cai, R. Lazarov, T. A. Manteuffel, and S. F. MicCormick, First-order system least squares for second-order partial differential equations I, SIAM Journal on Numerical Analysis, 1994, 31(6): 1785–1799.