Least energy solutions to a cooperative system of Schrödinger equations with prescribed $$L^2$$ -bounds: at least $$L^2$$ -critical growth

Springer Science and Business Media LLC - Tập 61 - Trang 1-31 - 2021
Jarosław Mederski1,2, Jacopo Schino1
1Institute of Mathematics, Polish Academy of Sciences, Warsaw, Poland
2Department of Mathematics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

Tóm tắt

We look for least energy solutions to the cooperative systems of coupled Schrödinger equations $$\begin{aligned} \left\{ \begin{array}{l} -\Delta u_i + \lambda _i u_i = \partial _iG(u)\quad \mathrm {in} \ {\mathbb {R}}^N, \ N \ge 3,\\ u_i \in H^1({\mathbb {R}}^N), \\ \int _{{\mathbb {R}}^N} |u_i|^2 \, dx \le \rho _i^2 \end{array} \right. i\in \{1,\ldots ,K\} \end{aligned}$$ with $$G\ge 0$$ , where $$\rho _i>0$$ is prescribed and $$(\lambda _i, u_i) \in {\mathbb {R}}\times H^1 ({\mathbb {R}}^N)$$ is to be determined, $$i\in \{1,\dots ,K\}$$ . Our approach is based on the minimization of the energy functional over a linear combination of the Nehari and Pohožaev constraints intersected with the product of the closed balls in $$L^2({\mathbb {R}}^N)$$ of radii $$\rho _i$$ , which allows to provide general growth assumptions about G and to know in advance the sign of the corresponding Lagrange multipliers. We assume that G has at least $$L^2$$ -critical growth at 0 and admits Sobolev critical growth. The more assumptions we make about G, N, and K, the more can be said about the minimizers of the corresponding energy functional. In particular, if $$K=2$$ , $$N\in \{3,4\}$$ , and G satisfies further assumptions, then $$u=(u_1,u_2)$$ is normalized, i.e., $$\int _{{\mathbb {R}}^N} |u_i|^2 \, dx=\rho _i^2$$ for $$i\in \{1,2\}$$ .

Tài liệu tham khảo

Akhmediev, N., Ankiewicz, A.: Partially coherent solitons on a finite background. Phys. Rev. Lett. 82(13), 2661–2664 (1999) Aközbek, N., John, S.: Optical solitary waves in two- and three-dimensional nonlinear photonic band-gap structures. Phys. Rev. E 57(2), 2287–2319 (1998) Alves, C.O., Ji, C., Miyagaki, O.H.: Multiplicity of normalized solutions for a Schrödinger equation with critical growth in \(\mathbb{R}^N\). arXiv:2103.07940, version of 20 April 2021 Aubin, T.: Problèmes isopérimétriques et espaces de Sobolev. J. Differ. Geometry 11, 573–598 (1976) Bartsch, T., Jeanjean, L.: Normalized solutions for nonlinear Schrödinger systems. Proc. R. Soc. Edinb. Sect. A 148(2), 225–242 (2018) Bartsch, T., Jeanjean, L., Soave, N.: Normalized solutions for a system of coupled cubic Schrödinger equations on \(\mathbb{R}^3\). J. Math. Pures Appl. 106(4), 583–614 (2016) Bartsch, T., Soave, N.: A natural constraint approach to normalized solutions of nonlinear Schrödinger equations and systems. J. Funct. Anal. 272(12), 4998–5037 (2017) Bartsch, T., Soave, N.: Corrigendum: Correction to: A natural constraint approach to normalized solutions of nonlinear Schrödinger equations and systems. J. Funct. Anal. 275(2), 516–521 (2018) Bellazzini, J., Jeanjean, L., Luo, T.: Existence and instability of standing waves with prescribed norm for a class of Schrödinger-Poisson equations. Proc. Lond. Math. Soc. (3) 107(2), 303–339 (2013) Berestycki, H., Lions, P.L.: Nonlinear scalar field equations. I—existence of a ground state. Arch. Ration. Mech. Anal. 82(4), 313–345 (1983) Bieganowski, B., Mederski, J.: Normalized ground states of the nonlinear Schrödinger equation with at least mass critical growth. J. Funct. Anal. 280(11), 108989 (2021) Brezis, H., Lieb, E.: Minimum action solutions of some vector field equations. Commun. Math. Phys. 96(1), 97–113 (1984) Cazenave, T.: Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics, 10, New York University, Courant Institute of Mathematical Sciences, New York, American Mathematical Society, Providence, RI (2003) Cazenave, T., Lions, P.-L.: Orbital stablity of standing waves for some nonlinear Schrödinger equations. Commun. Math. Phys. 85(4), 549–561 (1982) Clarke, F.H.: A new approach to Lagrange multipliers. Math. Oper. Res. 1(2), 165–174 (1976) Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47, 324–353 (1974) Esry, B.D., Greene, C.H., Burke, J.P., Bohn, J.L.: Hartree–Fock theory for double condensates. Phys. Rev. Lett. 78(19), 3594–3597 (1997) Evans, L.C.: Partial Differential Equations. American Mathematical Society, Providence (2010) Frantzeskakis, D.J.: Dark solitons in atomic Bose–Einstein condensates: from theory to experiments. J. Phys. A Math. Theor. 43, 68 (2010) Ghoussoub, N.: Duality and Perturbation Methods in Critical Point Theory, Cambridge Tracts in Mathematics, vol. 107. Cambridge University Press, Cambridge (1993) Ikoma, N.: Compactness of minimizing sequences in nonlinear Schrödinger systems under multicostraint conditions. Adv. Nonlinear Stud. 14(1), 115–136 (2014) Jeanjean, L.: Existence of solutions with prescribed norm for semilinear elliptic equations. Nonlinear Anal. 28(10), 1633–1659 (1997) Jeanjean, L., Lu, S.-S.: A mass supercritical problem revisited. Calc. Var. Partial Differ. Equ. 59, 174 (2020) Li, H., Zou, W.: Normalized ground states for semilinear elliptic systems with critical and subcritical nonlinearities. arXiv:2006.14387, version 29 June 2020 Li, M., He, J., Xu, H., Yang, M.: Normalized solutions for a coupled fractional Schrödinger system in low dimensions. Bound. Value Probl. 166, 29 (2020) Lieb, E.H., Loss, M.: Analysis. American Mathematical Society, Providence (2001) Lieb, E.H., Seiringer, R., Solovej, J.P., Yngvason, J.: The Mathematics of the Bose Gas and its Condensation. Birkäuser, Basel (2005) Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The locally compact case. Part I and II. Ann. Inst. H. Poincaré Anal. Non Linéaire, 1, 109–145; and 223–283 (1984) Luo, H., Zhang, Z.: Normalized solutions to the fractional Schrödinger equations with combined nonlinearities. Calc. Var. Partial Differ. Equ. 59(4), paper No. 143, 35 pp (2020) Malomed, B.: Multi-component Bose-Einstein condensates: theory. In: Kevrekidis, P.G., Frantzeskakis, D.J., Carretero-Gonzalez, R. (eds.) Emergent Nonlinear Phenomena in Bose–Einstein Condensation, pp. 287–305. Springer, Berlin (2008) Mederski, J.: Nonradial solutions for nonlinear scalar field equations. Nonlinearity 33(12), 6349–6380 (2020) Pitaevskii, L., Stringari, S.: Bose–Einstein Condensation. Oxford University Press, Oxford (2003) Shatah, J.: Unstable ground state of nonlinear Klein–Gordon equations. Trans. Am. Math. Soc. 290(2), 701–710 (1985) Slusher, R.E., Eggleton, B.J.: Nonlinear Photonic Crystals. Springer, Berlin (2003) Soave, N.: Normalized ground states for the NLS equation with combined nonlinearities. J. Differ. Equ. 269(9), 6941–6987 (2020) Soave, N.: Normalized ground states for the NLS equation with combined nonlinearities: the Sobolev critical case. J. Funct. Anal. 279(6), 108610 (2020) Solimini, S.: A note on compactness-type properties with respect to Lorentz norms of bounded subsets of a Sobolev space. Ann. Inst. H. Poincaré Anal. Non Linéaire 12(3), 319–337 (1995) Struwe, M.: Variational Methods. Springer, Berlin (2008) Stuart, C.A.: Bifurcation for Dirichlet problems without eigenvalues. Proc. Lond. Math. Soc. 45(1), 169–192 (1982) Talenti, G.: Best constants in Sobolev inequality. Ann. Mat. Pura Appl. (4) 110, 353–372 (1976) Timmermans, E.: Phase separation of Bose–Einstein condensates. Phys. Rev. Lett. 81(26), 5718–5721 (1998) Tintarev, K., Fieseler, K.-H.: Concentration Compactness: Functional-Analytic Grounds And Applications. Imperial College Press, London (2007) Wei, J., Wu, Y.: Normalized solutions for Schrödinger equations with critical Sobolev exponent and mixed nonlinearities. arXiv:2102.04030, version of 8 Feb. 2021 Willem, M.: Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications 24. Birkhäuser, Boston (1996)