Learning to rank spatio-temporal event hotspots
Tóm tắt
Từ khóa
Tài liệu tham khảo
Alves, L. G. A., Ribeiro, H. V., & Rodrigues, F. A. (2018). Crime prediction through urban metrics and statistical learning. Physica A: Statistical Mechanics and its Applications, 505, 435–443.
Assunção, R., & Correa, T. (2009). Surveillance to detect emerging space-time clusters. Computational Statistics & Data Analysis, 53(8), 2817–2830.
Berk, R., Sherman, L., Barnes, G., Kurtz, E., & Ahlman, L. (2009). Forecasting murder within a population of probationers and parolees: A high stakes application of statistical learning. Journal of the Royal Statistical Society: Series A (Statistics in Society), 172(1), 191–211.
Berman, E., Shapiro, J. N., & Felter, J. H. (2011). Can hearts and minds be bought? the economics of counterinsurgency in Iraq. Journal of Political Economy, 119(4), 766–819.
Bernasco, W. (2008). Them again? same-offender involvement in repeat and near repeat burglaries. European Journal of Criminology, 5(4), 411–431.
Bogomolov, A., Lepri, B., Staiano, J., Oliver, N., Pianesi, F., & Pentland, A. (2014). Once upon a crime: towards crime prediction from demographics and mobile data. In Proceedings of the 16th international conference on multimodal interaction (pp. 427–434). New York: ACM.
Braga, A. A., Turchan, B. S., Papachristos, A. V., & Hureau, D. M. (2019). Hot spots policing and crime reduction: An update of an ongoing systematic review and meta-analysis. Journal of Experimental Criminology, 15(3), 289–311.
Burges, C. J. C. (2010). From ranknet to lambdarank to lambdamart: An overview. Learning, 11(23–581), 81.
Caplan, J. M., Kennedy, L. W., & Miller, J. (2011). Risk terrain modeling: Brokering criminological theory and gis methods for crime forecasting. Justice Quarterly, 28(2), 360–381.
Carter, J. G., & Piza, E. (2018). Spatiotemporal convergence of crime and vehicle crash hot spots: Additional consideration for policing places. Crime & Delinquency, 64(14), 1795–1819. https://doi.org/10.1177/0011128717714793.
Chainey, S., Tompson, L., & Uhlig, S. (2008). The utility of hotspot mapping for predicting spatial patterns of crime. Security Journal, 21(1), 4–28.
Cohen, J., Gorr, W. L., & Olligschlaeger, A. M. (2007). Leading indicators and spatial interactions: A crime-forecasting model for proactive police deployment. Geographical Analysis, 39(1), 105–127.
Crimerank. (2018). https://github.com/gomohler/crimerank.
Curiel, R.P. (2019). Is crime concentrated or are we simply using the wrong metrics? arXiv preprint arXiv:1902.03105.
Diggle, P. J., Moraga, P., Rowlingson, B., Taylor, B. M., et al. (2013). Spatial and spatio-temporal log-gaussian cox processes: Extending the geostatistical paradigm. Statistical Science, 28(4), 542–563.
Drawve, G., Belongie, M., & Steinman, H. (2017). The role of crime analyst and researcher partnerships: A training exercise in green bay, wisconsin. Policing: A Journal of Policy and Practice.
Duczmal, L., Cançado, A. L. F., & Takahashi, R. H. C. (2008). Delineation of irregularly shaped disease clusters through multiobjective optimization. Journal of Computational and Graphical Statistics, 17(1), 243–262.
Duczmal, L., Kulldorff, M., & Huang, L. (2006). Evaluation of spatial scan statistics for irregularly shaped clusters. Journal of Computational and Graphical Statistics, 15(2), 428–442.
Fischer, H. (2008). Iraqi civilian casualties estimates. Washington DC: Library of congress Washington DC congressional research service.
Flaxman, S., Chirico, M., Pereira, P., & Loeffler, C. (2018). Scalable high-resolution forecasting of sparse spatiotemporal events with kernel methods: A winning solution to the nij” real-time crime forecasting challenge”. arXiv preprint arXiv:1801.02858.
Friedman, J. H. (2002). Stochastic gradient boosting. Computational Statistics & Data Analysis, 38(4), 367–378.
Gao, P., Guo, D., Liao, K., Webb, J. J., & Cutter, S. L. (2013). Early detection of terrorism outbreaks using prospective space-time scan statistics. The Professional Geographer, 65(4), 676–691.
Gorr, W. L. (2009). Forecast accuracy measures for exception reporting using receiver operating characteristic curves. International Journal of Forecasting, 25(1), 48–61.
Gorr, W. L., & Lee, Y. J. (2015). Early warning system for temporary crime hot spots. Journal of Quantitative Criminology, 31(1), 25–47.
Groff, E., & Taniguchi, T. (2019). Using citizen notification to interrupt near-repeat residential burglary patterns: the micro-level near-repeat experiment. Journal of Experimental Criminology, 15(2), 115–149.
Groß, W., Lange, S., Bödecker, J., & Blum, M. (2017). Predicting time series with space-time convolutional and recurrent neural networks. In Proceeding of European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (pp. 71–76).
Haberman, C. P., & Ratcliffe, J. H. (2012). The predictive policing challenges of near repeat armed street robberies. Policing: A Journal of Policy and Practice, 6(2), 151–166.
Johnson, S. D., Bernasco, W., Bowers, K. J., Elffers, H., Ratcliffe, J., Rengert, G., et al. (2007). Space-time patterns of risk: A cross national assessment of residential burglary victimization. Journal of Quantitative Criminology, 23(3), 201–219.
Kennedy, L. W., Caplan, J. M., & Piza, E. (2011). Risk clusters, hotspots, and spatial intelligence: Risk terrain modeling as an algorithm for police resource allocation strategies. Journal of Quantitative Criminology, 27(3), 339–362.
Khosla, A., An An, B., L., J.J., & Torralba, A. (2014). Looking beyond the visible scene. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 3710–3717).
Kulldorff, M. (2001). Prospective time periodic geographical disease surveillance using a scan statistic. Journal of the Royal Statistical Society: Series A (Statistics in Society), 164(1), 61–72.
Kuo, P.-F., Lord, D., & Walden, T. D. (2013). Using geographical information systems to organize police patrol routes effectively by grouping hotspots of crash and crime data. Journal of Transport Geography, 30, 138–148.
Leonard, B. (2009). Measuring stability and security in Iraq. Darby: DIANE Publishing.
Lewis, E., & Mohler, G. (2011). A nonparametric EM algorithm for multiscale Hawkes processes. preprint.
Liu, H., & Brown, D. E. (2003). Criminal incident prediction using a point-pattern-based density model. International Journal of Forecasting, 19(4), 603–622.
Liu, T.-Y., et al. (2009). Learning to rank for information retrieval. Foundations and Trends® in Information Retrieval, 3(3), 225–331.
McCollister, K. E., French, M. T., & Fang, H. (2010). The cost of crime to society: New crime-specific estimates for policy and program evaluation. Drug & Alcohol Dependence, 108(1), 98–109.
Mohler, G., & Porter, M.D. (2017). Rotational grid, PAI-maximizing crime forecasts. NIJ Report.
Mohler, G., Raje, R., Carter, J., Valasik, M., & Brantingham, J. (2018). A penalized likelihood method for balancing accuracy and fairness in predictive policing. In 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC) (pp. 2454–2459). New York: IEEE.
Mohler, G., et al. (2013). Modeling and estimation of multi-source clustering in crime and security data. The Annals of Applied Statistics, 7(3), 1525–1539.
Mohler, G., Brantingham, P. J., Carter, J., & Short, M. B. (2019). Reducing bias in estimates for the law of crime concentration. Journal of Quantitative Criminology, 35, 747–765.
Mohler, G. O., Short, M. B., Brantingham, P. J., Schoenberg, F. P., & Tita, G. E. (2011). Self-exciting point process modeling of crime. Journal of the American Statistical Association, 106(493), 100–108.
Mohler, G. O., Short, M. B., Malinowski, S., Johnson, M., Tita, G. E., Bertozzi, A. L., et al. (2015). Randomized controlled field trials of predictive policing. Journal of the American Statistical Association, 110(512), 1399–1411.
National Insititue of Justice. Nij real-time crime forecasting challenge, 2017.
Neill, D. B. (2009). Expectation-based scan statistics for monitoring spatial time series data. International Journal of Forecasting, 25(3), 498–517.
Neill, D. B. (2012). Fast subset scan for spatial pattern detection. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 74(2), 337–360.
Nobles, M. R., Ward, J. T., & Tillyer, R. (2016). The impact of neighborhood context on spatiotemporal patterns of Burglary. Journal of Research in Crime and Delinquency, 53(5), 711–740.
Perry, W. L. (2013). Predictive policing: The role of crime forecasting in law enforcement operations. Santa Monica: Rand Corporation.
Piza, E.L., & Carter, J.G. (2017). Predicting initiator and near repeat events in spatiotemporal crime patterns: An analysis of residential burglary and motor vehicle theft. Justice Quarterly (pp. 1–29).
Piza, E. L., & Carter, J. G. (2018). Predicting initiator and near repeat events in spatiotemporal crime patterns: An analysis of residential burglary and motor vehicle theft. Justice Quarterly, 35(5), 842–870.
Porter, M. D., & Reich, B. J. (2012). Evaluating temporally weighted kernel density methods for predicting the next event location in a series. Annals of GIS, 18(3), 225–240.
Ratcliffe, J. H., & Rengert, G. F. (2008). Near-repeat patterns in philadelphia shootings. Security Journal, 21(1–2), 58–76.
Ridgeway, G. (2007). Generalized boosted models: A guide to the gbm package. Update, 1(1), 2007.
Shaw, B., Shea, J., Sinha, S., & Hogue, A. (2013). Learning to rank for spatiotemporal search. In Proceedings of the sixth ACM international conference on Web search and data mining (pp. 717–726). ACM.
Shirota, S., Gelfand, A. E., et al. (2017). Space and circular time log gaussian cox processes with application to crime event data. The Annals of Applied Statistics, 11(2), 481–503.
Short, M. B., D’Orsogna, M. R., Brantingham, P. J., & Tita, G. E. (2009). Measuring and modeling repeat and near-repeat burglary effects. Journal of Quantitative Criminology, 25(3), 325–339.
Speakman, S., Somanchi, S., McFowland, E, I. I. I., & Neill, D. B. (2016). Penalized fast subset scanning. Journal of Computational and Graphical Statistics, 25(2), 382–404.
Stec, A., & Klabjan, D. (2018). Forecasting crime with deep learning. arXiv preprint arXiv:1806.01486.
Taddy, M. A. (2010). Autoregressive mixture models for dynamic spatial poisson processes: Application to tracking intensity of violent crime. Journal of the American Statistical Association, 105(492), 1403–1417.
Tango, T., & Takahashi, K. (2005). A flexibly shaped spatial scan statistic for detecting clusters. International journal of health geographics, 4(1), 11.
Wang, B., Yin, P., Bertozzi, A.L., Brantingham, P.J., Osher, S.J., & Xin, J. (2017). Deep learning for real-time crime forecasting and its ternarization. arXiv preprint arXiv:1711.08833.
Wang, H., Kifer, Daniel, G., Corina, & Li, Z. (2016). Crime rate inference with big data. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining (pp. 635–644). New York: ACM.
Wang, X., & Brown, D. E. (2012). The spatio-temporal modeling for criminal incidents. Security Informatics, 1(1), 1–17.
Wang, X., Gerber, M.S., & Brown, D.E. (2012). Automatic crime prediction using events extracted from twitter posts. In International Conference on Social Computing, Behavioral-Cultural Modeling, and Prediction (pp. 231–238). Berlin: Springer.
Weisburd, D., Gill, C., Wooditch, A., Barritt, W., & Murphy, J. (2020). Building collective action at crime hot spots: Findings from a randomized field experiment. Journal of Experimental Criminology, 1–31.
Weisburd, D. (2015). The law of crime concentration and the criminology of place. Criminology, 53(2), 133–157.
Wheeler, A.P. (2019). Allocating police resources while limiting racial inequality. Justice Quarterly, 1–27.
Youstin, T. J., Nobles, M. R., Ward, J. T., & Cook, C. L. (2011). Assessing the generalizability of the near repeat phenomenon. Criminal Justice and Behavior, 38(10), 1042–1063.
Zammit-Mangion, A., Dewar, M., Kadirkamanathan, V., & Sanguinetti, G. (2012). Point process modelling of the afghan war diary. Proceedings of the National Academy of Sciences, 109(31), 12414–12419.
Zehlike, M., & Castillo, C. (2018). Reducing disparate exposure in ranking: A learning to rank approach. arXiv preprint arXiv:1805.08716.