Learning to assess visual aesthetics of food images
Tóm tắt
Từ khóa
Tài liệu tham khảo
Manna, L. Digital food photography. Cengage Learning PTR, 2015.
Murray, N.; Marchesotti, L.; Perronnin, F. Ava: A large-scale database for aesthetic visual analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2408–2415, 2012.
Ma, S.; Liu, J.; Chen, C. W. A-lamp: Adaptive layout-aware multi-patch deep convolutional neural network for photo aesthetic assessment. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 722–731, 2017.
Hosu, V.; Goldlücke, B.; Saupe, D. Efiective aesthetics prediction with multi-level spatially pooled features. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 9367–9375, 2019.
Bossard, L.; Guillaumin, M.; van Gool, L. Food-101—mining discriminative components with random forests. In: Computer Vision-ECCV 2014. Lecture Notes in Computer Science, Vol. 8694. Fleet, D.; Pajdla, T.; Schiele, B.; Tuytelaars, T. Eds. Springer Cham, 446–461, 2014.
Zhang, X. J.; Lu, Y. F.; Zhang, S. H. Multi-task learning for food identification and analysis with deep convolutional neural networks. Journal of Computer Science and Technology Vol. 31, No. 3, 489–500, 2016.
Salvador, A.; Hynes, N.; Aytar, Y.; Marin, J.; Oi, F.; Weber, I.; Torralba, A. Learning cross-modal embeddings for cooking recipes and food images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 3068–3076, 2017.
Li, Y.; Sheopuri, A. Applying image analysis to assess food aesthetics and uniqueness. In: Proceedings of the IEEE International Conference on Image Processing, 311–314, 2015.
Luo, W.; Wang, X.; Tang, X. Content-based photo quality assessment. In: Proceedings of the IEEE International Conference on Computer Vision, 2206–2213, 2011.
Chen, X.; Zhu, Y.; Zhou, H.; Diao, L.; Wang, D. ChineseFoodNet: A large-scale image dataset for chinese food recognition. arXiv preprint arXiv:1705.02743, 2017.
Sheng, K. K.; Dong, W. M.; Huang, H. B.; Ma, C. Y.; Hu, B. G. Gourmet photography dataset for aesthetic assessment of food images. In: Proceedings of the SIGGRAPH Asia 2018 Technical Briefs, Article No. 20, 2018.
Datta, R.; Joshi, D.; Li, J.; Wang, J. Z. Studying aesthetics in photographic images using a computational approach. In: Computer Vision-ECCV 2006. Lecture Notes in Computer Science, Vol. 3953. Leonardis, A.; Bischof, H.; Pinz, A. Eds. Springer Berlin Heidelberg, 288–301, 2006.
Zhang, F. L., Wang, M.; Hu, S. M. Aesthetic image enhancement by dependence-aware object recomposition. IEEE Transactions on Multimedia Vol. 15, No. 7, 1480–1490, 2013.
Kong, S.; Shen, X. H.; Lin, Z.; Mech, R.; Fowlkes, C. Photo aesthetics ranking network with attributes and content adaptation. In: Computer Vision-ECCV 2016. Lecture Notes in Computer Science, Vol. 9905. Leibe, B.; Matas, J.; Sebe, N.; Welling, M. Eds. Springer Cham, 662–679, 2016.
Lu, X.; Lin, Z.; Shen, X.; Mech, R.; Wang, J. Z. Deep multi-patch aggregation network for image style, aesthetics, and quality estimation. In: Proceedings of the IEEE International Conference on Computer Vision, 990–998, 2015.
Talebi, H., Milanfar, P. NIMA: Neural image assessment. IEEE Transactions on Image Processing Vol. 27, No. 8, 3998–4011, 2018.
Sheng, K. K.; Dong, W. M.; Ma, C. Y.; Mei, X.; Huang, F. Y.; Hu, B. G. Attention-based multipatch aggregation for image aesthetic assessment. In: Proceedings of the 26th ACM International Conference on Multimedia, 879–886, 2018.
Kucer, M.; Loui, A. C.; Messinger, D. W. Leveraging expert feature knowledge for predicting image aesthetics. IEEE Transactions on Image Processing Vol. 27, No. 10, 5100–5112, 2018.
Liu, Z. G.; Wang, Z. P.; Yao, Y. Y.; Zhang, L. M.; Shao, L. Deep active learning with contaminated tags for image aesthetics assessment. IEEE Transactions on Image Processing doi: https://doi.org/10.1109/TIP.2018.2828326, 2018.
Sun, R.; Lian, Z.; Tang, Y.; Xiao, J. Aesthetic visual quality evaluation of Chinese handwritings. In: Proceedings of the International Joint Conferences on Artificial Intelligence, 2510–2516, 2015.
Chang, H. W.; Yu, F.; Wang, J.; Ashley, D.; Finkelstein, A. Automatic triage for a photo series. ACM Transactions on Graphics Vol. 35, No. 4, Article No. 148, 2016.
Chang, K.-Y.; Lu, K.-H.; Chen, C.-S. Aesthetic critiques generation for photos. In: Proceedings of the IEEE International Conference on Computer Vision, 3514–3523, 2017.
Hung, W.-C.; Zhang, J.; Shen, X.; Lin, Z.; Lee, J.-Y.; Yang, M.-H. Learning to blend photos. In: Proceedings of the European Conference on Computer Vision, 70–86, 2018.
Yu, W. H.; Zhang, H. D.; He, X. N.; Chen, X.; Xiong, L.; Qin, Z. Aesthetic-based clothing recommendation. In: Proceedings of the World Wide Web Conference, 649–658, 2018.
Hassannejad, H.; Matrella, G.; Ciampolini, P.; de Munari, I.; Mordonini, M.; Cagnoni, S. Food image recognition using very deep convolutional networks. In: Proceedings of the 2nd International Workshop on Multimedia Assisted Dietary Management, 41–49, 2016.
Meyers, A.; Johnston, N.; Rathod, V.; Korattikara, A.; Gorban, A.; Silberman, N.; Guadarrama, S.; Papandreou, G.; Huang, J.; Murphy, K. P. Im2Calories: Towards an automated mobile vision food diary. In: Proceedings of the IEEE International Conference on Computer Vision, 1233–1241, 2015.
Hinton, G. E.; Vinyals, O.; Dean, J. Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531, 2014.
Szegedy, C.; Vanhoucke, V.; Iofie, S.; Shlens, J.; Z. Wojna. Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2818–2826, 2016.
Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research Vol. 15, No. 1, 1929–1958, 2014.
Krizhevsky, A.; Sutskever, I.; Hinton, G. E. ImageNet classification with deep convolutional neural networks. Communications of the ACM Vol. 60, No. 6, 84–90, 2017.
Hein, M.; Andriushchenko, M.; Bitterwolf, J. Why ReLU networks yield high-confidence predictions far away from the training data and how to mitigate the problem. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 41–50, 2019.
Manning, C. D.; Raghavan, P.; Schütze, H. Introduction to Information Retrieval. Cambridge University Press, 2008.
Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; Fei-Fei, L. ImageNet: A large-scale hierarchical image database. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 248–255, 2009.
Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1–9, 2015.
He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 770–778, 2016.
Oliva, A.; Torralba, A. Modeling the shape of the scene: A holistic representation of the spatial envelope. International Journal of Computer Vision Vol. 42, No. 3, 145–175, 2001.
Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556v6, 2015.
Zhou, B. L.; Lapedriza, A.; Khosla, A.; Oliva, A.; Torralba, A. Places: A 10 million image database for scene recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 40, No. 6, 1452–1464, 2018.
Zhang, R.; Efros, A. A.; Shechtman, E.; Wang, O. The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 586–595, 2018.
Mai, L.; Jin, H.; Liu, F. Composition-preserving deep photo aesthetics assessment. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 497–506, 2016.
Zhang, X. D.; Gao, X. B.; Lu, W.; He, L. H. A gated peripheral-foveal convolutional neural network for unified image aesthetic prediction. IEEE Transactions on Multimedia Vol. 21, No. 11, 2815–2826, 2019.
Deng, Y.; Loy, C. C.; Tang, X. Aesthetic-driven image enhancement by adversarial learning. In: Proceedings of the 26th ACM International Conference on Multimedia, 870–878, 2018.
Hu, Y.; He, H.; Xu, C.; Wang, B.; Lin, S. Exposure: A white-box photo post-processing framework. ACM Transactions on Graphics Vol. 37, No. 2, Article No. 26, 2018.
Xu, Z.; Huang, S. L.; Zhang, Y.; Tao, D. C. Webly-supervised fine-grained visual categorization via deep domain adaptation. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 40, No. 5, 1100–1113, 2018.
Sheng, K. K.; Dong, W. M.; Kong, Y.; Mei, X.; Li, J. L.; Wang, C. J.; Huang, F.; Hu, B. Evaluating the quality of face alignment without ground truth. Computer Graphics Forum Vol. 34, No. 7, 213–223, 2015.
Papadopoulos, D. P.; Tamaazousti, Y.; Oi, F.; Weber, I.; Torralba, A. How to make a pizza: Learning a compositional layer-based GAN model. In: proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 8002–8011, 2019.