Learning thermal radiative properties of porous media from engineered geometric features
Tài liệu tham khảo
Moser, 2015, Computation of effective radiative properties of Powders for selective laser sintering simulations, JOM, 67, 1194, 10.1007/s11837-015-1386-8
Wang, 2013, Thermal performance analysis of porous media receiver with concentrated solar irradiation, Int. J. Heat Mass Transfer, 62, 247, 10.1016/j.ijheatmasstransfer.2013.03.003
Lipiński, 2013, Review of heat transfer research for solar thermochemical applications, J. Thermal Sci. Eng. Appl., 5, 10.1115/1.4024088
Wheeler, 2017, Modelling of solar thermochemical reaction systems, Sol. Energy, 156, 149, 10.1016/j.solener.2017.07.069
Cimini, 1987, Experimental measurements of radiant transmission through packed and fluidized media, Exp. Heat Transf. Int. J., 1, 45, 10.1080/08916158708946330
Dombrovsky, 2010
Argo, 1953, Heat transfer in packed beds-prediction of radial rates in gas-solid beds, Chem. Eng. Prog., 49, 443
C. K. Chan, and C. L. Tien, Radiative transfer in packed spheres,(1974) 52-58.
De Wasch, 1972, Heat transfer in packed beds, Chem. Eng. Sci., 27, 567, 10.1016/0009-2509(72)87012-X
Taine, 2012, Upscaling statistical methodology for radiative transfer in porous media: New trends, J. Heat Transfer, 134, 10.1115/1.4005133
Van der Held, 1952, The contribution of radiation to the conduction of heat, Appl. Sci. Res. Sect. A, 3, 237, 10.1007/BF03184931
Coray, 2010, Experimental and numerical determination of thermal radiative properties of ZnO particulate media, J. Heat Transfer, 132, 10.1115/1.3194763
Ghosh, 2008, Theoretical analysis of radiative effects on transient free convection heat transfer past a hot vertical surface in porous media, Nonlinear Anal., 13, 419, 10.15388/NA.2008.13.4.14548
Hsu, 1992, Measurements of thermal conductivity and optical properties of porous partially stabilized zirconia, Exp. Heat Transf. Int. J., 5, 293, 10.1080/08916159208946446
Argento, 1996, A ray tracing method for evaluating the radiative heat transfer in porous media.pdf, Int. J. Heat Mass Transfer, 39, 3175, 10.1016/0017-9310(95)00403-3
Farmer, 1998, Comparison of Monte Carlo strategies for radiative transfer in participating media, Adv. Heat Transfer, 31, 333, 10.1016/S0065-2717(08)70243-0
Howell, 1964, Monte Carlo solution of thermal transfer through radiant media between gray walls, J. Heat Transfer, 8, 116, 10.1115/1.3687044
Tancrez, 2004, Direct identification of absorption and scattering coefficients and phase function of a porous medium by a Monte Carlo technique, Int. J. Heat Mass Transfer, 47, 373, 10.1016/S0017-9310(03)00146-7
Petrasch, 2007, Tomography-based Monte Carlo determination of radiative properties of reticulate porous ceramics, J. Quant. Spectrosc. Radiat. Transfer, 105, 180, 10.1016/j.jqsrt.2006.11.002
Haussener, 2010, Tomography-based heat and mass transfer characterization of reticulate porous ceramics for high-temperature processing, J. Heat Transfer, 132, 10.1115/1.4000226
Zarrouati, 2013, Statistical characterization of near-wall radiative properties of a statistically non-homogeneous and anisotropic porous medium, Int. J. Heat Mass Transfer, 67, 776, 10.1016/j.ijheatmasstransfer.2013.08.021
Yang, 1983, Radiative heat transfer through a randomly packed bed of spheres by the Monte Carlo method, J. Heat Transfer, 105, 325, 10.1115/1.3245582
Zhao, 2016, Monte Carlo study on extinction coefficient of silicon carbide porous media used for solar receiver, Int. J. Heat Mass Transfer, 92, 1061, 10.1016/j.ijheatmasstransfer.2015.08.105
Coquard, 2005, Radiative characteristics of beds made of large spheres containing an absorbing and scattering medium, Int. J. Therm. Sci., 44, 926, 10.1016/j.ijthermalsci.2005.03.009
Coquard, 2004, Radiative Characteristics of opaque spherical particles beds: a new method of prediction, J. Thermophys. Heat Transfer, 18, 178, 10.2514/1.5082
Coquard, 2005, Radiative characteristics of beds of spheres containing an absorbing and scattering medium, J. Thermophys. Heat Transfer, 19, 226, 10.2514/1.6809
Wang, 2016, Study of radiative transfer in 1D densely packed bed layer containing absorbing – scattering spherical particles, Int. J. Heat Mass Transfer, 102, 669, 10.1016/j.ijheatmasstransfer.2016.06.065
Coranell, 1994, A Monte Carlo simulation study of radiation heat Transfer in the Multiwafer LPCVD Reactor, J. Electrochem. Soc., 141, 496, 10.1149/1.2054753
Jiménez-Saelices, 2017, Effect of freeze-drying parameters on the microstructure and thermal insulating properties of nanofibrillated cellulose aerogels, J. Sol-Gel Sci. Technol., 84, 475, 10.1007/s10971-017-4451-7
Ji, 2019, Solar ray collection rate fluctuation analysis with Monte Carlo Ray Tracingmethod for space solar power satellite, Sol. Energy, 185, 235, 10.1016/j.solener.2019.04.067
Rafiee, 2020, 869
Rafiee, 2018, Monte Carlo ray tracing modelling of multi-crystalline silicon photovoltaic device enhanced by luminescent material, 3139
Mazumder, 2000, A fast monte carlo scheme for thermal radiation in semiconductor processing applications, Numeric. Heat Transf.: Part B: Fundament., 37, 185, 10.1080/104077900275486
Wu, 2000, Multiple-rays tracing technique for radiative exchange within packed beds, Numeric. Heat Transf.: Part B: Fundamentals, 37, 469, 10.1080/10407790050051155
Taine, 2008, Radiation in porous media: an upscaling methodology, ISBN
Kang, 2019, A data driven artificial neural network model for predicting radiative properties of metallic packed beds, J. Quant. Spectrosc. Radiat. Transfer, 226, 66, 10.1016/j.jqsrt.2019.01.013
Liu, 2009, An effective hybrid algorithm for the circles and spheres packing problems, 135
Huynh, 2009
Bartuschka, 1997, A robust and efficient implementation of a sweep line algorithm for the straight line segment intersection problem
“Introduction to Shading.” [Online]. Available: https://www.scratchapixel.com/lessons/3d-basic-rendering/introduction-to-shading/reflection-refraction-fresnel?fbclid=IwAR22k-acZUXSkKqItOcOw0xd99EyYFbIertn-uph_jVhPqsa6pjTDvGiP4c.
Modest, 2013
Zhang, 2015, The refractive angle of light propagation at absorbing media interface, Optik (Stuttg), 126, 4387, 10.1016/j.ijleo.2015.08.148
Rakić, 1998, Optical properties of metallic films for vertical-cavity optoelectronic devices, Appl. Opt., 37, 5271, 10.1364/AO.37.005271
Boyden, 2006, Temperature and wavelength-dependent spectral absorptivities of metallic materials in the infrared, J. Thermophys. Heat Transfer, 20, 9, 10.2514/1.15518
Petrasch, 2008, Tomography-based multiscale analyses of the 3D geometrical morphology of reticulated porous ceramics, J. Am. Ceram. Soc., 91, 2659, 10.1111/j.1551-2916.2008.02308.x
Cecen, 2012, 3-D Microstructure analysis of fuel cell materials: spatial distributions of tortuosity, void size and diffusivity, J. Electrochem. Soc., 159, B299, 10.1149/2.068203jes
Havelka, 2016, Compression and reconstruction of random microstructures using accelerated lineal path function, Comput. Mater. Sci., 122, 102, 10.1016/j.commatsci.2016.04.044
Matyka, 2012, How to calculate tortuosity easily?, 4, 17, 10.1063/1.4711147
Sobieski, 2018, The Path tracking method as an alternative for tortuosity determination in granular beds, Granul. Matter, 20, 1, 10.1007/s10035-018-0842-x
BOHREN, 2008
“Refractive index info.”, [Online]. Available: https://refractiveindex.info/?shelf=other&book=air&page=Ciddor.
Sharadga, 2020, 150, 797
M, 2020, Artificial neural networks in radiation heat transfer analysis, J. Heat Transfer, 14
Yarahmadi, 2020, Numerical focusing of a wide-field-angle earth radiation budget imager using an artificial neural network, Remote Sens., 12, 176, 10.3390/rs12010176