Learning thermal radiative properties of porous media from engineered geometric features

International Journal of Heat and Mass Transfer - Tập 179 - Trang 121668 - 2021
Shima Hajimirza1, Hussein Sharadga2
1Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
2Department of Mechanical Engineering, Texas A&M University, College Station, TX 77840, USA

Tài liệu tham khảo

Moser, 2015, Computation of effective radiative properties of Powders for selective laser sintering simulations, JOM, 67, 1194, 10.1007/s11837-015-1386-8 Wang, 2013, Thermal performance analysis of porous media receiver with concentrated solar irradiation, Int. J. Heat Mass Transfer, 62, 247, 10.1016/j.ijheatmasstransfer.2013.03.003 Lipiński, 2013, Review of heat transfer research for solar thermochemical applications, J. Thermal Sci. Eng. Appl., 5, 10.1115/1.4024088 Wheeler, 2017, Modelling of solar thermochemical reaction systems, Sol. Energy, 156, 149, 10.1016/j.solener.2017.07.069 Cimini, 1987, Experimental measurements of radiant transmission through packed and fluidized media, Exp. Heat Transf. Int. J., 1, 45, 10.1080/08916158708946330 Dombrovsky, 2010 Argo, 1953, Heat transfer in packed beds-prediction of radial rates in gas-solid beds, Chem. Eng. Prog., 49, 443 C. K. Chan, and C. L. Tien, Radiative transfer in packed spheres,(1974) 52-58. De Wasch, 1972, Heat transfer in packed beds, Chem. Eng. Sci., 27, 567, 10.1016/0009-2509(72)87012-X Taine, 2012, Upscaling statistical methodology for radiative transfer in porous media: New trends, J. Heat Transfer, 134, 10.1115/1.4005133 Van der Held, 1952, The contribution of radiation to the conduction of heat, Appl. Sci. Res. Sect. A, 3, 237, 10.1007/BF03184931 Coray, 2010, Experimental and numerical determination of thermal radiative properties of ZnO particulate media, J. Heat Transfer, 132, 10.1115/1.3194763 Ghosh, 2008, Theoretical analysis of radiative effects on transient free convection heat transfer past a hot vertical surface in porous media, Nonlinear Anal., 13, 419, 10.15388/NA.2008.13.4.14548 Hsu, 1992, Measurements of thermal conductivity and optical properties of porous partially stabilized zirconia, Exp. Heat Transf. Int. J., 5, 293, 10.1080/08916159208946446 Argento, 1996, A ray tracing method for evaluating the radiative heat transfer in porous media.pdf, Int. J. Heat Mass Transfer, 39, 3175, 10.1016/0017-9310(95)00403-3 Farmer, 1998, Comparison of Monte Carlo strategies for radiative transfer in participating media, Adv. Heat Transfer, 31, 333, 10.1016/S0065-2717(08)70243-0 Howell, 1964, Monte Carlo solution of thermal transfer through radiant media between gray walls, J. Heat Transfer, 8, 116, 10.1115/1.3687044 Tancrez, 2004, Direct identification of absorption and scattering coefficients and phase function of a porous medium by a Monte Carlo technique, Int. J. Heat Mass Transfer, 47, 373, 10.1016/S0017-9310(03)00146-7 Petrasch, 2007, Tomography-based Monte Carlo determination of radiative properties of reticulate porous ceramics, J. Quant. Spectrosc. Radiat. Transfer, 105, 180, 10.1016/j.jqsrt.2006.11.002 Haussener, 2010, Tomography-based heat and mass transfer characterization of reticulate porous ceramics for high-temperature processing, J. Heat Transfer, 132, 10.1115/1.4000226 Zarrouati, 2013, Statistical characterization of near-wall radiative properties of a statistically non-homogeneous and anisotropic porous medium, Int. J. Heat Mass Transfer, 67, 776, 10.1016/j.ijheatmasstransfer.2013.08.021 Yang, 1983, Radiative heat transfer through a randomly packed bed of spheres by the Monte Carlo method, J. Heat Transfer, 105, 325, 10.1115/1.3245582 Zhao, 2016, Monte Carlo study on extinction coefficient of silicon carbide porous media used for solar receiver, Int. J. Heat Mass Transfer, 92, 1061, 10.1016/j.ijheatmasstransfer.2015.08.105 Coquard, 2005, Radiative characteristics of beds made of large spheres containing an absorbing and scattering medium, Int. J. Therm. Sci., 44, 926, 10.1016/j.ijthermalsci.2005.03.009 Coquard, 2004, Radiative Characteristics of opaque spherical particles beds: a new method of prediction, J. Thermophys. Heat Transfer, 18, 178, 10.2514/1.5082 Coquard, 2005, Radiative characteristics of beds of spheres containing an absorbing and scattering medium, J. Thermophys. Heat Transfer, 19, 226, 10.2514/1.6809 Wang, 2016, Study of radiative transfer in 1D densely packed bed layer containing absorbing – scattering spherical particles, Int. J. Heat Mass Transfer, 102, 669, 10.1016/j.ijheatmasstransfer.2016.06.065 Coranell, 1994, A Monte Carlo simulation study of radiation heat Transfer in the Multiwafer LPCVD Reactor, J. Electrochem. Soc., 141, 496, 10.1149/1.2054753 Jiménez-Saelices, 2017, Effect of freeze-drying parameters on the microstructure and thermal insulating properties of nanofibrillated cellulose aerogels, J. Sol-Gel Sci. Technol., 84, 475, 10.1007/s10971-017-4451-7 Ji, 2019, Solar ray collection rate fluctuation analysis with Monte Carlo Ray Tracingmethod for space solar power satellite, Sol. Energy, 185, 235, 10.1016/j.solener.2019.04.067 Rafiee, 2020, 869 Rafiee, 2018, Monte Carlo ray tracing modelling of multi-crystalline silicon photovoltaic device enhanced by luminescent material, 3139 Mazumder, 2000, A fast monte carlo scheme for thermal radiation in semiconductor processing applications, Numeric. Heat Transf.: Part B: Fundament., 37, 185, 10.1080/104077900275486 Wu, 2000, Multiple-rays tracing technique for radiative exchange within packed beds, Numeric. Heat Transf.: Part B: Fundamentals, 37, 469, 10.1080/10407790050051155 Taine, 2008, Radiation in porous media: an upscaling methodology, ISBN Kang, 2019, A data driven artificial neural network model for predicting radiative properties of metallic packed beds, J. Quant. Spectrosc. Radiat. Transfer, 226, 66, 10.1016/j.jqsrt.2019.01.013 Liu, 2009, An effective hybrid algorithm for the circles and spheres packing problems, 135 Huynh, 2009 Bartuschka, 1997, A robust and efficient implementation of a sweep line algorithm for the straight line segment intersection problem “Introduction to Shading.” [Online]. Available: https://www.scratchapixel.com/lessons/3d-basic-rendering/introduction-to-shading/reflection-refraction-fresnel?fbclid=IwAR22k-acZUXSkKqItOcOw0xd99EyYFbIertn-uph_jVhPqsa6pjTDvGiP4c. Modest, 2013 Zhang, 2015, The refractive angle of light propagation at absorbing media interface, Optik (Stuttg), 126, 4387, 10.1016/j.ijleo.2015.08.148 Rakić, 1998, Optical properties of metallic films for vertical-cavity optoelectronic devices, Appl. Opt., 37, 5271, 10.1364/AO.37.005271 Boyden, 2006, Temperature and wavelength-dependent spectral absorptivities of metallic materials in the infrared, J. Thermophys. Heat Transfer, 20, 9, 10.2514/1.15518 Petrasch, 2008, Tomography-based multiscale analyses of the 3D geometrical morphology of reticulated porous ceramics, J. Am. Ceram. Soc., 91, 2659, 10.1111/j.1551-2916.2008.02308.x Cecen, 2012, 3-D Microstructure analysis of fuel cell materials: spatial distributions of tortuosity, void size and diffusivity, J. Electrochem. Soc., 159, B299, 10.1149/2.068203jes Havelka, 2016, Compression and reconstruction of random microstructures using accelerated lineal path function, Comput. Mater. Sci., 122, 102, 10.1016/j.commatsci.2016.04.044 Matyka, 2012, How to calculate tortuosity easily?, 4, 17, 10.1063/1.4711147 Sobieski, 2018, The Path tracking method as an alternative for tortuosity determination in granular beds, Granul. Matter, 20, 1, 10.1007/s10035-018-0842-x BOHREN, 2008 “Refractive index info.”, [Online]. Available: https://refractiveindex.info/?shelf=other&book=air&page=Ciddor. Sharadga, 2020, 150, 797 M, 2020, Artificial neural networks in radiation heat transfer analysis, J. Heat Transfer, 14 Yarahmadi, 2020, Numerical focusing of a wide-field-angle earth radiation budget imager using an artificial neural network, Remote Sens., 12, 176, 10.3390/rs12010176