Learning task-parameterized dynamic movement primitives using mixture of GMMs

Affan Pervez1, Dongheui Lee1
1Chair of Automatic Control Engineering, Technical University of Munich, 80333, Munich, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

http://wiki.ros.org/ar_track_alvar

Alizadeh T (2014) Statistical learning of task modulated human movements through demonstration. Ph.D. thesis, Istituto Italiano di Tecnologia

Bishop CM, Lasserre J et al (2007) Generative or discriminative? Getting the best of both worlds. Bayesian Stat 8:3–24

Calinon S (2009) Robot programming by demonstration. EPFL Press, Lausanne

Calinon S (2016) A tutorial on task-parameterized movement learning and retrieval. Intell Serv Robot 9(1):1–29

Calinon S, Alizadeh T, Caldwell DG (2013) On improving the extrapolation capability of task-parameterized movement models. In: 2013 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE, pp 610–616

Calinon S, Li Z, Alizadeh T, Tsagarakis NG, Caldwell DG (2012) Statistical dynamical systems for skills acquisition in humanoids. In: 2012 12th IEEE-RAS international conference on humanoid robots (Humanoids). pp 323–329

Da Silva BC, Baldassarre G, Konidaris G, Barto (2014) A Learning parameterized motor skills on a humanoid robot. In: 2014 IEEE international conference on robotics and automation (ICRA). IEEE, pp 5239–5244

Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Ser B (Methodological) 39(1):1–38

Forte D, Gams A, Morimoto J, Ude A (2012) On-line motion synthesis and adaptation using a trajectory database. Robot Auton Syst 60(10):1327–1339

Gams A, Ijspeert AJ, Schaal S, Lenarčič J (2009) On-line learning and modulation of periodic movements with nonlinear dynamical systems. Auton Robots 27(1):3–23

Ghahramani Z, Jordan MI (1994) Supervised learning from incomplete data via an EM approach. In: Advances in neural information processing systems 6. Citeseer

Herzog D, Krüger V, Grest D (2008) Parametric hidden Markov models for recognition and synthesis of movements. In: BMVC, vol 8, pp 163–172. Citeseer

Jordan A (2002) On discriminative versus generative classifiers: a comparison of logistic regression and naive bayes. Adv Neural Inf Process Syst 14:841

Kober J, Mülling K, Krömer O, Lampert CH, Schölkopf B, Peters J (2010) Movement templates for learning of hitting and batting. In: 2010 IEEE international conference on robotics and automation (ICRA). IEEE, pp 853–858

Lee D, Ott C (2011) Incremental kinesthetic teaching of motion primitives using the motion refinement tube. Auton Robots 31(2–3):115–131

Lee D, Ott C, Nakamura Y (2010) Mimetic communication model with compliant physical contact in human humanoid interaction. Int J Robot Res 29(13):1684–1704

Matsubara T, Hyon SH, Morimoto J (2011) Learning parametric dynamic movement primitives from multiple demonstrations. Neural Netw 24(5):493–500

Pastor P, Hoffmann H, Asfour T, Schaal S (2009) Learning and generalization of motor skills by learning from demonstration. In: IEEE international conference on robotics and automation (ICRA) pp 763–768

Pastor P, Kalakrishnan M, Righetti L, Schaal S (2012) Towards associative skill memories. In: 2012 12th IEEE-RAS international conference on humanoid robots (Humanoids). IEEE, pp 309–315

Pastor P, Righetti L, Kalakrishnan M, Schaal S (2011) Online movement adaptation based on previous sensor experiences. In: 2011 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE, pp 365–371

Pervez A, Lee D (2015) A componentwise simulated annealing EM algorithm for mixtures. In: Joint German/Austrian conference on artificial intelligence (Künstliche Intelligenz). Springer, Berlin, pp 287–294

Petersen KB, Pedersen MS et al (2008) The matrix cookbook. Tech Univ Den 7:15

Rasmussen CE, Nickisch H (2010) Gaussian processes for machine learning (GPML) toolbox. J Mach Learn Res 11:3011–3015

Rueckert E, Mundo J, Paraschos A, Peters J, Neumann G (2015) Extracting low-dimensional control variables for movement primitives. In: 2015 IEEE international conference on robotics and automation (ICRA). IEEE, pp 1511–1518

Schaal S (2006) Dynamic movement primitives-a framework for motor control in humans and humanoid robotics. In: Kimura H, Tsuchiya K, Ishiguro A, Witt H (eds) Adaptive motion of animals and machines. Springer, Berlin, pp 261–280

Stulp F, Raiola G, Hoarau A, Ivaldi S, Sigaud O (2013) Learning compact parameterized skills with a single regression. In: 13th IEEE-RAS international conference on humanoid robots (Humanoids), pp 417–422

Ude A, Gams A, Asfour T, Morimoto J (2010) Task-specific generalization of discrete and periodic dynamic movement primitives. IEEE Trans Robot 26(5):800–815

Ueda N, Nakano R (1998) Deterministic annealing EM algorithm. Neural Netw 11(2):271–282

Vijayakumar S, Schaal S (2000) Locally weighted projection regression: an O(n) algorithm for incremental real time learning in high dimensional space. In: Proceedings of the sixteenth conference international conference on machine learning