Learning of cellular neural networks

Future Generation Computer Systems - Tập 17 - Trang 689-697 - 2001
Sergey Pudov1
1Supercomputer Software Department, ICMMG, pr. Ak. Lavrentieva 6, 630090 Novosibirsk, Russia

Tài liệu tham khảo

P. Thiran, K. Crounse, L.O. Chua, M. Hasler, Pattern formation properties of autonomous cellular neural networks, IEEE Trans. Circuits and Systems-1 42 (10) (1995). Chua, 1988, Cellular neural networks: theory and application, IEEE Trans. Circuits and Systems, CAS-35, 1257, 10.1109/31.7600 L.O. Chua, CNN: A Paradigm for Complexity, Vol. 31, Series on Nonlinear Science, World Scientific, Singapore, 1998. Pudov, 1997, Cellular-neural associative memory learning, Instrument. Data Process., 2, 98 S.G. Pudov, Comparative Analysis of Learning Methods of Cellular-neural Associative Memory, Lecture Notes in Computer Science, Vol. 1662, Springer, Berlin, 1999, pp. 108–119. F. Rosenblatt. Principles of Neurodynamics, Spartan, Washington, 1959. Arik, 1996, Equilibrium analysis of non-symmetric CNNs, Int. J. Circuit Theory Appl., 24, 269, 10.1002/(SICI)1097-007X(199605/06)24:3<269::AID-CTA915>3.0.CO;2-L D. Beletkov, M. Ostapkevich, S. Piskunov, I. Zhileev, WinALT: A Software Tool for Fine-grain Algorithms and Structures Synthesis and Simulation, Lecture Notes in Computer Science, Vol. 1662, Springer, Berlin, 1999, pp. 491–496.