Learning Modulo Theories for constructive preference elicitation
Tài liệu tham khảo
Peintner, 2008, Preferences in interactive systems: technical challenges and case studies, AI Mag., 29, 13
March, 1978, Bounded rationality, ambiguity, and the engineering of choice, Bell J. Econ., 9, 587, 10.2307/3003600
Domshlak, 2011, Preferences in AI: an overview, Artif. Intell., 175, 1037, 10.1016/j.artint.2011.03.004
Pigozzi, 2016, Preferences in artificial intelligence, Ann. Math. Artif. Intell., 77, 361, 10.1007/s10472-015-9475-5
Guo, 2010, Real-time multiattribute Bayesian preference elicitation with pairwise comparison queries, J. Mach. Learn. Res. - Proc. Track, 9, 289
Braziunas, 2007, Minimax regret based elicitation of generalized additive utilities, 25
Boutilier, 2010, Simultaneous elicitation of preference features and utility, 1160
Boutilier, 2006, Constraint-based optimization and utility elicitation using the minimax decision criterion, Artif. Intell., 170, 686, 10.1016/j.artint.2006.02.003
Bonilla, 2010, Gaussian process preference elicitation, 262
Viappiani, 2012, Monte Carlo methods for preference learning
Birlutiu, 2012, Efficiently learning the preferences of people, Mach. Learn., 1
Gelain, 2010, Elicitation strategies for soft constraint problems with missing preferences: properties, algorithms and experimental studies, Artif. Intell., 174, 270, 10.1016/j.artint.2009.11.015
Yu, 2011, Make it home: automatic optimization of furniture arrangement, ACM Trans. Graph., 30, 86:1, 10.1145/2010324.1964981
Merrell, 2010, Computer-generated residential building layouts, ACM Trans. Graph., 29, 181:1, 10.1145/1882261.1866203
Yang, 2013, Urban pattern: layout design by hierarchical domain splitting, ACM Trans. Graph., 32, 181:1, 10.1145/2508363.2508405
Nieuwenhuis, 2006, On SAT modulo theories and optimization problems, 156
Sebastiani, 2015, Optimization Modulo Theories with Linear Rational Costs, ACM Trans. Comput. Log., 16, 10.1145/2699915
Miller, 1956, The magical number seven, plus or minus two: some limits on our capacity for processing information, Psychol. Rev., 63, 81, 10.1037/h0043158
Tibshirani, 1996, Regression shrinkage and selection via the lasso, J. R. Stat. Soc., Ser. E, 58, 267
Teso, 2017, Structured learning modulo theories, Artif. Intell., 244, 166, 10.1016/j.artint.2015.04.002
Campigotto, 2011, Active learning of combinatorial features for interactive optimization
Barrett, 2009, Satisfiability modulo theories, 825
Sebastiani, 2007, Lazy satisfiability modulo theories, J. Satisf. Boolean Model. Comput., 3, 141
Barrett, 2009, Satisfiability modulo theories, 825
Nieuwenhuis, 2006, On SAT modulo theories and optimization problems, vol. 4121
Cimatti, 2010, Satisfiability modulo the theory of costs: foundations and applications, vol. 6015, 99
Cimatti, 2013, A modular approach to MaxSAT modulo theories, vol. 7962
Keeney, 1976
Joachims, 2002, Optimizing search engines using clickthrough data, 133
Friedman, 2004, Discussion of boosting papers, Ann. Stat., 32, 102
Zhu, 2004, 1-norm support vector machines, 49
Pu, 2008, User-involved preference elicitation for product search and recommender systems, AI Mag., 29, 93
Conitzer, 2009, Eliciting single-peaked preferences using comparison queries, J. Artif. Intell. Res., 35, 161, 10.1613/jair.2606
Baddeley, 1974, Working memory, Psychol. Learn. Motiv., 8, 47, 10.1016/S0079-7421(08)60452-1
2001, Behav. Brain Sci., 24, 87, 10.1017/S0140525X01003922
Braziunas, 2006
Pigozzi, 2016, Preferences in artificial intelligence, Ann. Math. Artif. Intell., 77, 361, 10.1007/s10472-015-9475-5
Savage, 1951, The theory of statistical decision, J. Am. Stat. Assoc., 46, 55, 10.1080/01621459.1951.10500768
Viappiani, 2007, Conversational recommenders with adaptive suggestions, 89
Viappiani, 2009, Regret-based optimal recommendation sets in conversational recommender systems, 101
Zhang, 2006, A comparative study of compound critique generation in conversational recommender systems, 234
Sabin, 1998, Product configuration frameworks-a survey, IEEE Intell. Syst. Appl., 13, 42, 10.1109/5254.708432
Felfernig, 2014
Boutilier, 1997, A constraint-based approach to preference elicitation and decision making, 19
Boutilier, 2004, Cp-nets: a tool for representing and reasoning with conditional ceteris paribus preference statements, J. Artif. Intell. Res., 21, 135, 10.1613/jair.1234
Allen, 2015, Cp-nets: from theory to practice, 555
Ricci, 2014, Recommender systems: models and techniques, 1511
Viappiani, 2011, Recommendation sets and choice queries: there is no exploration/exploitation tradeoff!
Bollen, 2010, Understanding choice overload in recommender systems, 63
Settles, 2009
Settles, 2012, Active learning, 1, 10.1007/978-3-031-01560-1_1
Kremer, 2014, Active learning with support vector machines, Wiley Interdiscip. Rev. Data Min. Knowl. Discov., 4, 313, 10.1002/widm.1132
David, 1963
Bradley, 1952, Rank analysis of incomplete block designs: I. The method of paired comparisons, Biometrika, 39, 324
Luce, 2005
Plackett, 1975, The analysis of permutations, Appl. Stat., 24, 193, 10.2307/2346567
2008
Radlinski, 2007, Active exploration for learning rankings from clickthrough data, 570
Xu, 2007, Incorporating diversity and density in active learning for relevance feedback, vol. 4425, 246
Fan, 2008, LIBLINEAR: a library for large linear classification, J. Mach. Learn. Res., 9, 1871
Weng, 2011, A Bayesian approximation method for online ranking, J. Mach. Learn. Res., 12, 267
Tsukida, 2011
Mcfadden, 2001, Economic choices, Am. Econ. Rev., 91, 351, 10.1257/aer.91.3.351
Fränzle, 2007, Efficient solving of large non-linear arithmetic constraint systems with complex Boolean structure, JSAT, 1, 209
Jovanovic, 2012, Solving non-linear arithmetic, vol. 7364, 339
Larraz, 2014, Minimal-model-guided approaches to solving polynomial constraints and extensions, vol. 8561, 333
Chakrabarti, 2008, Structured learning for non-smooth ranking losses, 88
Dragone, 2018, Constructive preference elicitation, Frontiers Robotics AI, 4, 71, 10.3389/frobt.2017.00071
Yan, 2011, Active learning from crowds, 1161
Campigotto, 2010, Handling concept drift in preference learning for interactive decision making
Paschos, 2014, Applications of Combinatorial Optimization, 10.1002/9781119005384
Weston, 2003, Use of the zero norm with linear models and kernel methods, J. Mach. Learn. Res., 3, 1439
Teso, 2016, Constructive preference elicitation by setwise max-margin learning, 2067
Teso, 2017, Coactive critiquing: elicitation of preferences and features, 2639
Dragone, 2018, Constructive preference elicitation over hybrid combinatorial spaces, 2943