Learning Intelligent Behavior in a Non-stationary and Partially Observable Environment
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abul, O., Polat, F. & Alhajj, R. (2000). Multi-Agent Reinforcement Learning Using Function Approximation. IEEE Transaction on Systems, Man and Cybernetics 30(4): 485–497.
Bellmann, R. E. (1957). Dynamic Programming. Princeton, NJ: Princeton University Press.
Ellis, H. C. (1972). Fundamentals of Human Learning and Cognition. Dubuque, Iowa: WM.C. Brown company Publishers.
Estes, W. K. (1970). Learning Theory and Mental Development. New York, NY: Academic Press.
Howard, R. A. (1960). Dynamic Programming and Markov Processes. Cambridge, MA: The MIT Press.
Hu, J. & Wellman, M. P. (1998). Multi-Agent Reinforcement Learning: Theoretical Frame-work and an Algorithm. Proc.of Int.Conf.on Machine Learning, 242–250.
Hu, J. & Wellman, M. P. (1998). Multiagent Reinforcement Learning and Stochastic Games. Games and Economic Behavior.
Hulse, S. H., Egeth, H. & Deese, J. (1984). The Psychology of Learning. McGraw-Hill.
Kaelbling, L. P., Littman, M. L. & Moore, A. W. (1996). Reinfocement Learning: A Survey. Journal of Artificial Intelligence Research 4: 237–285.
Kaelbling, L. P. et al. (1998). Planning and Acting in Partially Observable Stochastic Domains. Artificial Intelligence 101.
Keller, F. S. (1969). Reinforcement Theory. New York, NY: Random House.
Kodratoff, Y. (1998). Introduction to Machine Learning. Morgan Kaufmann.
Kuter, U. & Polat, F. (2000). Learning Better in Dynamic, Partially Observable Environ-ment. In Lindemann, G. (ed.) Proc.of European Conf.on Artificial Intelligence (ECAI) Workshop on Modeling Artificial Societies and Hybrid Organization, 50–68. Berlin, Aug. 20-25.
Langley, P. (1995). Elements of Machine Learning. Morgan Kaufman
Littman, M. L., Cassandra, A. R. & Kaelbling, L. P. (1995). Learning Policies for Partially Observable Environments: Scaling up. In Huhns, M. N. & Singh, M. P. (eds.) Readings in Agents, 495–503. Morgan Kaufman.
Minsky, M. (1961). Steps towards Artificial Intelligence. Proceedings of IR E, 8–30. Reprinted in Feigenbaum, E. A. & Feldman, J. (eds.) Computers and Thought, 406-450. New York, NY: McGraw-Hill.
Mitchell, T. M. (1997). Machine Learning. New York, NY: McGraw-Hill.
Polat, F, Guvenir, S. & Shekhar, S. (1993). A Negotiation Platform for Cooperating Multi-Agent Systems. International Journal of Concurrent Engineering:Research & Applica-tions 3: 179–187.
Polat, F. & Guvenir, A. (1994). A Conflict Resolution Based Decentralized Multi-Agent Problem Solving Model. Artificial Social Systems, LNAI 130, 279–294. Springer-Verlag.
Russel, S. J. & Norvig, P. (1997). Artificial Intelligence: A Modern Approach. Englewood Cliffs, NJ: Prentice-Hall International, Inc.
Sen, S., Sekaran, M. & Hale, J. (1994). Learning to Coordinate without Sharing Information. In Huhns, M. N. & Singh, M. P. (eds.) Readings in Agents, 509–514. Morgan Kaufman.
Sutton, R. S. & Barto, A. G. (1998). Reinforcement Learning: An Introduction. MIT Press.
Tan, M. (1993). Multi-Agent Reinforcement Learning: Independent vs. Cooperative Agents. In Huhns, M. N. & Singh, M. P. (eds.) Readings in Agents, 487–494. Morgan Kaufman.
Turing, A. M. (1950). Computing Machinery and Intelligence. Mind 95: 433–460. Reprinted in Mind design I I, 29-6. Cambridge, MA: MIT Press.
Watkins, C. J. C. H. (1989). Learning from Delayed Rewards. PhD Thesis, University of Cambridge, England.
Watkins, C. J. C. H. & Dayan, P. (1992). Technical Note: Q-Learning. Machine Learning 8: 279–292.
Wei, G. (1996). Adaptation and Learning in Multi-Agent Systems: Some Remarks and a Bibliography. In Weiss, G. and Sen, S. (eds.) Adaption and Learning in Multi-Agent Systems. Berlin: Springer.
Weiss, G. (1999). Multi-Agent Systems: A Modern Approach to Distributed Artificial Intelli-gence, 28–77. Mit Press.