Leaf trait variability maintains similar leaf exchange rhythms in Hirtella glandulosa Spreng. (Chrysobalanaceae) populations growing on contrasting soil types in the Brazilian Atlantic Forest
Tóm tắt
Abiotic and biotic factors constrain species occurrences, although many species are widely distributed. We investigated the performance of two populations of Hirtella glandulosa Spreng. (Chrysobalanaceae), a tropical tree or shrub that occurs from Venezuela to southeastern Brazil. This study was carried out in two evergreen Atlantic Forests fragments in the Chapada Diamantina Mountains (Brazil) growing on sites with different soil types and different water availabilities: a river margin on litholic soils (river/lithosol) and a plateau with the deep clayey soils (plateau/latosol). We examined leaf phenology, water potential (ΨW), wood density, leaf traits, and leaf gas exchange of populations growing at both sites in the rainy and dry seasons. Despite differences in their ΨW values, both populations maintained similar leaf phenological patterns. Leaf traits, ΨW, and leaf gas exchange differed spatially and temporally. The maintenance of phenological strategies conditioned by distinct leaf and gas exchange traits compensated for lower water potential levels in the river margin/lithosol site and favored the maintenance of a positive water balance and greater water use efficiency than in the plateau/latosol site. Morphological and physiological trait adjustments could allow the wide distribution of H. glandulosa in contrasting soil types with different water availabilities.
Tài liệu tham khảo
Ackerly D (2004) Functional strategies of chaparral shrubs in relation to seasonal water deficit and disturbance. Ecol Monogr 74:25–44. https://doi.org/10.1890/03-4022
Albert HC, Thuiller W, Yoccoz NG, Soudant A, Boucher F, Saccone P, Lavorel S (2010) Intraspecific functional variability: extent, structure and sources of variation. J. Ecol 98:604–613. https://doi.org/10.1111/j.1365-2745.2010.01651.x
Alvares CA, Stape JL, Sentelhas PC, Cesar P, Gonçalves JLM, Sparovek G (2014) Köppen’s climate classification map for Brazil Meteorol Z. Meteorol Z 22:711–728. https://doi.org/10.1127/0941-2948/2013/0507
Arcoverde GB, Rodrigues BM, Pompelli MF, Santos MG (2011) Water relations and some aspects of leaf metabolism of Jatropha curcas young plants under two water deficit levels and recovery. Braz J Plant Physiol 23:123–130. https://doi.org/10.1590/S1677-04202011000200004
Ashton I, Miller AE, Bowman WD, Suding KN (2010) Niche complementarity due to plasticity in resource use: plant partitioning of chemical N forms. Ecology 91:3252–3260. https://doi.org/10.1890/09-1849.1
Asner GP, Martin RE (2016) Spectranomics: emerging science and conservation opportunities at the interface of biodiversity and remote sensing. Glob Ecol Conserv 8:212–219. https://doi.org/10.1016/j.gecco.2016.09.010
Ayres M, Ayres JrM, Ayres DL, Santos AAS (2007) Bioestat: aplicações estatísticas nas áreas das ciências bio-médicas, 5th edn. ONG Mamiraua, Belém
Bacelar ELVA, Moutinho-Pereira JM, Gonçalves BMC, Brito CVQ, Gomes-Laranjo J, Ferreira HMF, Correia CM (2012) Water use strategies of plants under drought conditions. In: Aroca R (eds) Plant responses to drought stress. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32653-0_6
Barbosa RI, Ferreira CAC (2004) Biomassa acima do solo de um ecossistema de “campina” em Roraima, norte da Amazônia brasileira. Acta Amaz 34:577–586. https://doi.org/10.1590/S0044-59672004000400009
Beutler NA, Centurion JF, Souza ZM, Andrioli I, Roque CG (2002) Retenção de água em dois tipos de latossolos sob diferentes usos. Rev Bras Cienc Solo 26:829–834. https://doi.org/10.1590/S0100-06832002000300029
Bhardwaj AK, Shainberg I, Goldstein D, Warringtonn DN, Levy GJ (2007) Water retention and hydraulic conductivity of cross-linked polyacrylamides in sandy soil. Soil Sci Soc Am J 71:406–412. https://doi.org/10.2136/sssaj2006.0138
Bolnick D, Svanbäck R, Fordyce JA, Yang LH, Davis JM, Hulsey CD, Forister ML (2003) The ecology of individuals: incidence and implications of individual specialization. Am Nat 161:1–28. https://doi.org/10.1086/343878
Borchert R (1994) Soil and stem water storage determine phenology and distribution of tropical dry forest trees. Ecology 75:1437–1449. https://doi.org/10.2307/1937467
Borchert R (2000) Organismic and environmental controls of bud growth in tropical trees. In: Viémont JD, Crabbé J (eds) Dormancy in plants: from whole plant behavior to cellular control CAB International. Wallingford, pp 87–107
Borchert R, Rivera G (2001) Photoperiodic control of seasonal development and dormancy in tropical stem succulent trees. Tree Physiol 21:213–221. https://doi.org/10.1093/treephys/21.4.213
Borchert R, Robertson K, Schwartz MD, Williams-Linera G (2005) Phenology of temperate trees in tropical climates. Int J Biometeorol 50:57–65. https://doi.org/10.1007/s00484-005-0261-7
Brady NC, Weil RR (2013) Elementos da natureza e propriedades dos solos, 3rd edn. Bookman, Porto Alegre
Braga NS, Vitória AP, Souza G, Barros CF, Freitas L (2016) Weak relationships between leaf phenology and isohydric and anisohydric behavior in lowland wet tropical forest trees. Biotropica 48:453–464. https://doi.org/10.1111/btp.12324
Bramley H, Turner NC, Siddique KHM (2013) Water Use Efficiency In: Kole C (ed) Genomics and breeding for climate-resilient crops Springer, Berlin. https://doi.org/10.1007/978-3-642-37048-9_6
Bucci S, Goldstein G, Meinzer F, Scholz F, Franco A, Bustamante M (2004) Functional convergence in hydraulic architecture and water relations of tropical savanna trees: from leaf to whole plant. Tree Physiol 24:891–899. https://doi.org/10.1093/treephys/24.8.891
Butz P, Hölscher D, Cueva E, Graefe S (2018) Tree water use patterns as influenced by phenology in a dry forest of southern ecuador. Front Plant Sci 9:945. https://doi.org/10.3389/fpls.2018.00945
Calle Z, Schlumpberger BO, Piedrahita L, Leftin A, Hammer SA, Tye A, Borchert R (2010) Seasonal variation in daily insolation induces synchronous bud break and flowering in the tropics. Trees 24:865–877. https://doi.org/10.1007/s00468-010-0456-3
Cardoso FCG, Marques R, Botosso PC, Marques MCM (2012) Stem growth and phenology of two tropical trees in contrasting soil conditions. Plant Soil 354:269–281. https://doi.org/10.1007/S11104-011-1063-9
Carlucci MB, Debastiani VJ, Pillar VD, Vanderlei DLDS (2014) Between- and within-species trait variability and the assembly of sapling communities in forest patches. J Veg Sci 26:21–31. https://doi.org/10.1111/jvs.12223
Chacón-Madrigal E, Wanek W, Hietz P, Dullinger S (2018) Is local trait variation related to total range size of tropical trees? PLoS ONE 13:e0193268. https://doi.org/10.1371/journal.pone.0193268
Chave J, Coomes D, Jansen S, Swenson NG, Zanne AE (2009) Towards a worldwide wood economics spectrum. Ecol Lett 12:351–366. https://doi.org/10.1111/j.1461-0248.2009.01285.x
Ciganda V, Gitelson A, Schepers J (2008) Vertical profile and temporal variation of chlorophyll in maize canopy: quantitative “crop vigor” indicator by means of reflectance-based techniques. Agron J 100:1409–1417. https://doi.org/10.2134/agronj2007.0322
Clark J (2010) Individuals and the variation needed for high species diversity in forest trees. Science 327: 1129–1132. https://doi.org/10.1126/science.1183506
Colombo AF, Joly CA (2010) Brazilian Atlantic Forest lato sensu: the most ancient Brazilian forest, and a biodiversity hotspot, is highly threatened by climate change. Braz J Biol 70:697–708. https://doi.org/10.1590/S1519-69842010000400002
Cosby BJ, Hornberger GM, Clapp RB, Ginn TR (1984) A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils. Water Resour Res 20:682–690. https://doi.org/10.1029/wr020i006p00682
Couto APL, Funch LS, Conceição AA (2011) Composição florística e fisionomia de floresta estacional semidecíduas submontana na Chapada Diamantina, Bahia, Brasil. Rodriguésia 61:391–405. https://doi.org/10.1590/2175-7860201162213
Couto-Santos APL, Conceição AA, Funch LS (2015) The role of temporal scale in linear edge effects on a submontane Atlantic forest arboreal community. Acta Bot Bras 29:190–197. https://doi.org/10.1590/0102-33062014abb3732
De la Riva EG, Tosto A, Pérez-Ramos IM (2015) A plant economics spectrum in Mediterranean forests along environmental gradients: is there coordination among leaf, stem and root traits? J Veg Sci 27:187–199. https://doi.org/10.1111/jvs.12341
Donagema GK, Campos DVB, Calderano SB, Teixeira WG, Viana JHM (2011) Manual de métodos de análise de solo, 2nd edn. Embrapa Solos, Rio de Janeiro
Ehleringer JR, Cerling TE (1995) Atmospheric CO2 and the ratio of intercellular to ambient CO2 concentrations in plants. Tree Physiol 15:105–111. https://doi.org/10.1093/treephys/15.2.105
Evert RF (2006) Esau’s Plant anatomy: meristems, cells, and tissues of the plant body: their structure, function, and development. Wiley, Hoboken
Ferreira DF (2011) Sisvar: um sistema computacional de análise estatística. Ciênc Agrotec 35:1039–1042. https://doi.org/10.1590/S1413-70542011000600001
Fournier LA (1974) Un método cuantitativo para la medición de características fenológicas en árboles. Turrialba 24:422–423
Funch LS (1997) Composição florística e fenologia de mata ciliar e mata de encosta adjacentes ao rio Lençóis, Lençóis, Bahia PhD Thesis. Universidade Estadual de Campinas, Campinas
Funch LS, Rodal MJN, Funch RR (2008) Floristic aspects of forests of the Chapada Diamantina, Bahia, Brazil. In: Thomas W, Britton EG (eds) The coastal forests of Northeastern Brazil Springer and NYBG Press. New York, pp 193–220
Funch LS, Funch R, Barroso GM (2002) Phenology of Gallery and Montane Forest in the Chapada Diamantina, Bahia, Brazil. Biotropica 34:40–50
Gomes-Silva F, Alves M (2020) Chrysobalanaceae in the East part of the Brazilian Northeastern. Rodriguésia 71:e03172018. https://doi.org/10.1590/2175-7860202071105
Hernández EI, Vilagrosa A, Luis VC, Llorcab M, Chirinob E, Vallejob VR (2009) Root hydraulic conductance, gas exchange and leaf water potential in seedlings of Pistacia lentiscus L. and Quercus suber L. grown under different fertilization and light regimes. Environ Exp Bot 67:269–276. https://doi.org/10.1016/j.envexpbot.2009.07.004
Hernández-Vargas G, Sánchez-Velásquez LR, López-Acosta JC, Noa-Carrazana JC, Perroni Y (2019) Relationship between soil properties and leaf functional traits in early secondary succession of tropical montane cloud forest. Ecol Res 34:213–224. https://doi.org/10.1111/1440-1703.1267
Hinckley TM, Richter H, Schulte, PJ (1991) Water relations In: Raghavendra AS (ed) Physiology of trees. Wiley, New York, pp 137–162
Hoffmann WA, Marchin RM, Abit P, Lau OL (2011) Hydraulic failure and tree dieback are associated with high wood density in a temperate forest under extreme drought. Glob Chang Biol 17:2731–2742. https://doi.org/10.1111/j.1365-2486.2011.02401.x
Ilic J, Boland D, Mcdonald M, Downes G, Blakemore P (2000) Woody density phase I-state of knowledge. Technical Report No. 18. CSIRO Forestry and Forest Products, Canberra
Kikuzawa K, Lechowicz MJ (2011) Ecology of leaf longevity Ecological Research Monographs. Springer, Dordrecht
Kiorapostolou N, Da Sois L, Petruzzellis F (2019) Vulnerability to xylem embolism correlates to wood parenchyma fraction in Angiosperms but not in Gymnosperms. Tree Physiol 39:1675–1684. https://doi.org/10.1093/treephys/tpz068
Lamont B, Lamont H (2000) Utilizable water in leaves of 8 arid species as derived from pressure-volume curves and chlorophyll fluorescence. Plant Physiol 110:64–71. https://doi.org/10.1034/j.1399-3054.2000.110109.x
Lemos-Filho JP, Mendonça-Filho CV (2000) Seasonal changes in the water status of three wood legumes from the Atlantic forest, Caratinga. Brazil J Trop Ecol 16:21–32. https://doi.org/10.1017/S0266467400001243
Longui EL, Oliveira IR, Graebner RC, Freitas MLM, Florsheim SMB, Garcia JN (2017) Relationships among wood anatomy, hydraulic conductivity, density and shear parallel to the grain in the wood of 24-year-old Handroanthus vellosoi (Bignoniaceae). Rodriguésia 68:1217–1224. https://doi.org/10.1590/2175-7860201768406
Medrano H, Bota Josefina, Cifre J, Flexas J, Ribas M, Gulías J (2007) Eficiencia en el uso del água por las plantas Investigaciones Geográficas. Alicante 43:63–84. https://doi.org/10.14198/INGEO2007.43.04
Meinzer FC (2003) Functional convergence in plant responses to the environment. Oecologia 134:1–11. https://doi.org/10.1007/s00442-002-1088-0
Mendez-Alonzo R, Pineda-Garcıa F, Paz H, Rosell JA, Olson ME (2013) Leaf phenology is associated with soil wáter availability and xylem traits in a tropical dry forest. Trees 27:745–754. https://doi.org/10.1007/s00468-012-0829-x
Mooney HA, Dunn EL (1970) Convergent evolution of mediterranean-climate evergreen Sclerophyll Shrubs. Evolution 24(2):292. https://doi.org/10.2307/2406805
Moraes ACS, Viória AP, Rossato DR, Miranda LAP, Funch LS (2017) Leaf phenology and morphofunctional variation in Myrcia amazonica DC (Myrtaceae) in gallery forest and “campo rupestre” vegetation in the Chapada Diamantina, Brazil. Braz J Bot 40:439-450. https://doi.org/10.1007/s40415-016-0348-x
Morellato LPC, Talora DC, Takahasi A, Bencke CC, Romera EC, Zipparro VB (2000) Phenology of atlantic rain Forest: a comparative study. Biotropica 32:811–823. https://doi.org/10.1111/j.1744-7429.2000.tb00620.x
Motzer T, Munz N, Ku¨ppers M, Schmitt D, Anhuf D (2005) Stomatal conductance, transpiration and sap flow of tropical montane rain forest trees in the southern Ecuadorian Andes. Tree Physiol 25:1283–1293. https://doi.org/10.1093/treephys/25.10.1283
Mueller-Dombois D, Ellenberg H (1974) Aims and methods of vegetation ecology. Wiley, New York
Nepstad D, Lefebvre P, Silva UL, Tomasella J, Schlesinger P, Solórzano L, Moutinho P, Ray D, Benito JG (2004) Amazon drought and its implications for forest flammability and tree growth: a basin-wide analysis Glob Change Biol 10:704–717. https://doi.org/10.1111/j.1529-8817.2003.00772.x
Neves SPS, Funch R, Conceicão AA, Miranda LAP, Funch LS (2016) What are the most important factors determining different vegetation types in the Chapada Diamantina, Brazil? Braz J Bot 76:315–333. https://doi.org/10.1590/1519-6984.13814
Neves SPS, Miranda LAP, Rossato DT, Funch LS (2017) The roles of rainfall, soil properties, and species traits in flowering phenology along a savanna-seasonally dry tropical forest gradient. Braz J Bot 40:665–679. https://doi.org/10.1007/s40415-017-0368-1
Nobel OS (1999) Physicochemical and environmental plant physiology. Academic Press, New York Oliveira-Filho AT, Fontes MAL (2000) Patterns of floristic differentiation among Atlantic forests in Southeastern Brazil and the influence of climate. Biotropica 32:793–810. https://doi.org/10.1111/j.1744-7429.2000.tb00619.x
Oliveira-Filho AT, Fontes MAL (2000) Patterns of floristic differentiation among Atlantic forests in Southeastern Brazil and the influence of climate. Biotropica 32:793–810. https://doi.org/10.1111/j.1744-7429.2000.tb00619.x
Pérez-Harguindeguy N, Díaz S, Garnier E (2013) New handbook for standardized measurement of plant functional traits worldwide. Aust J Bot 61:137–234. https://doi.org/10.1071/BT12225
Perkins J, Reed M, Akanyang L et al (2013) Making land management more sustainable: experience implementing a new methodological framework in Botswana. Land Degrad Dev 24:463–477. https://doi.org/10.1002/ldr.1142
Pireda S, Oliveira DS, Borges NL et al (2019) Acclimatization capacity of leaf traits of species co-occurring in restinga and seasonal semideciduous forest ecosystems. Environ Exp Bot 164:190–202. https://doi.org/10.1016/j.envexpbot.2019.05.012
Pruitt J, Ferrari M (2011) Intraspecific trait variants determine the nature of interspecific interactions in a habitat forming species. Ecology 92:1902–1908. https://doi.org/10.1890/11-0701.1
Reich PB (1995) Phenology of tropical forest: patterns, causes, and consequences. Can J Bot 73:164–174. https://doi.org/10.1139/b95-020
Reich PB, Borchert R (1984) Water stress and tree phenology in a tropical dry forest in the lowlands of Costa Rica. J Ecol 72:61–74. https://doi.org/10.2307/2260006
Rosado BHP, Mattos EA (2007) Variação temporal de características morfológicas de folhas em dez espécies do Parque Nacional da Restinga de Jurubatiba, Macaé, RJ, Brasil. Acta Bot Bras 21:741–752. https://doi.org/10.1590/S0102-33062007000300020
Rosado BHP, Joly CA, Burgess SSO, Oliveira RS, Aidar MPM (2015) Changes in plant functional traits and water use in Atlantic rainforest: evidence of conservative water use in spatio-temporal scales. Trees 30:47–61
Rossatto DR, Hoffmann WA, Silva LCR, Haridasan M, Sternberg LSL, Franco AC (2013) Seasonal variation in leaf traits between congeneric savanna and forest trees in Central Brazil: implications for forest expansion into savanna. Trees 27:1139–1150. https://doi.org/10.1007/s00468-013-0864-2
Roughgarden J (1972) Evolution of niche width. Am Nat 106:683–718. https://doi.org/10.1086/282807
Santos MGM, Sousa AS, Neves APS, Rossatto DV, Miranda LAP, Funch LS (in Press). Drought responses and phenotypic plasticity of Maprounea guianensis populations in humid and dry tropical forests for Rodriguésia 72: e00162020
Scholz F, Bucci S, Goldstein G, Meinzer F, Franco A, Salazar A (2008) Plant and stand level variation in biophysical and physiological traits along tree density gradients in the Cerrado. Braz J Plant Physiol 20:217–232. https://doi.org/10.1590/S1677-04202008000300006
Silveira FAO, Negreiros D, Newton PUB et al (2016) Ecology and evolution of plant diversity in the endangered campo rupestre: a neglected conservation priority. Plant Soil 403:129–152. https://doi.org/10.1007/s11104-015-2637-8
Souza IM, Funch LS (2017) Synchronization of leafing and reproductive phenological events in Hymenaea L. species (Leguminosae, Caesalpinioideae): the role of photoperiod as the trigger. Braz J Bot 40:125–136. https://doi.org/10.1007/s40415-016-0314-7
Torres RR, Lapola DM, Marengo JÁ (2012) Socio-climatic hotspots in Brazil. Clim Change 115:597–609. https://doi.org/10.1007/s10584-012-0461-1
Trugilho PF, Silva DA, Frazão FJL et al (1990) Comparação de métodos de determinação da densidade básica em madeira. Acta Amaz 20:307–309. https://doi.org/10.1590/1809-43921990201319
Valladares F, Matesanz S, Guilhaumon F et al (2014) The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol Lett 17:1351–1364
Valdez-Hernández M, Andrade JL, Jackson PC et al (2010) Phenology of five tree species of a tropical dry forest in Yucatan, Mexico: effects of environmental and physiological factors. Plant Soil 329:155–171. https://doi.org/10.1007/s11104-009-0142-7
Vieira TO, Degli-Espoti MSO, Souza GM et al (2015) Photoacclimation capacity in seedling and sapling of Siparuna guianensis (Siparunaeae): response to irradiance gradient in tropical forest. Photosynthetica 53:11–22. https://doi.org/10.1007/s11099-015-0073-x
Vieira TO, Santiago L, Pestana IA, Ávila-Lovera E, Silva JLA, Vitória AP (2021) Species-specific performance and trade-off between growth and survival in the early-successional light-demanding group. Photosynthetica 59:203–214. https://doi.org/10.32615/ps.2021.013
Violle C, Navas ML, Vile D (2007) Let the concept of trait be functional. Oikos 116:882–892. https://doi.org/10.1111/j.0030-1299.2007.15559.x
Violle C, Enquist BJ, McGill BJ et al (2012) The return of the variance: intraspecific variability in community ecology. Trends Ecol Evol 27:252. https://doi.org/10.1016/j.tree.2011.11.014
Vitória AP, Vieira TO, Camargo PB, Santiago LS (2016) Using leaf δ13C and photosynthetic parameters to understand acclimation to irradiance and leaf age effects during tropical forest regeneration. For Ecol Manag 379:50–60. https://doi.org/10.1016/j.foreco.2016.07.048
Vitória AP, Alves LF, Santiago LS (2019) Atlantic forest and leaft traits: na overview. Trees 33:1535–1547. https://doi.org/10.1007/s00468-019-01864-z
Wang Z, Li G, Sun H, Ma l, Guo Y, Zhao Z, Gao H, Mei L (2018) Effects of drought stress on photosynthesis and photosynthetic electron transport chain in young apple tree leaves. Biol Open 7:bio035279. https://doi.org/10.1242/bio.035279
Werden LK, Waring BG, Smith-Martin CM, Powers JS (2017) Tropical dry forest trees and lianas differ in leaf economic spectrum traits but have overlapping water-use strategies. Tree Physiol 1–14. https://doi.org/10.1093/treephys/tpx135
Williams-Linera G, Meave J (2002) Patrones fenológicos. In: Guariguata MR, Kattan GH (org) Ecologia y conservación de bosques neotropicales 1st edn Libro Universitario, Cartago, pp 407–431
Witkowski ETF, Lamont BB (1991) Leaf specific mass confounds leaf density and thickness. Oecologia 88:486–493. https://doi.org/10.1007/BF00317710
Wright GC, Nageswara R, Farquhar GD (1994) Water-use efficiency and carbon isotope discrimination in peanut under water deficit conditions. Crop Sci 34:92–97. https://doi.org/10.2135/cropsci1994.0011183X003400010016x
Zar JH (1996) Bioestatistical analysis, 3rd edn. Prentice-Hall International Editions, New Jersey
Zar JH (2010) Biostatistical analysis. Prentice-Hall, New Jersey