Leaf temperature of maize and Crop Water Stress Index with variable irrigation and nitrogen supply

Springer Science and Business Media LLC - Tập 35 - Trang 549-560 - 2017
David A. Carroll1, Neil C. Hansen1, Bryan G. Hopkins1, Kendall C. DeJonge2
1Department of Plant and Wildlife Sciences, 4105 LSB, Brigham Young University, Provo, USA
2USDA-ARS Water Management and Systems Research Unit, Fort Collins, USA

Tóm tắt

Crop canopy temperature and Crop Water Stress Index (CWSI) are used for assessing plant water status and irrigation scheduling, but understanding management interactions is necessary. This study evaluated whether nutrient deficiencies would confound interpretation of plant water status from leaf temperature. Leaf temperature and CWSI in maize (Zea mays L.) were evaluated with different irrigation strategies and varying nitrogen (N) supply for replicated glasshouse and field studies. Glasshouse treatments consisted of well-watered or simulated drought and sufficient, intermediate, or deficient N. Field study treatments consisted of well-watered, controlled deficit irrigation, or simulated drought and sufficient, sufficient delayed, or deficient N. Average CWSI values varied across irrigation treatments, with 0.37 and 0.54 for glasshouse well-watered and drought and 0.34, 0.47, and 0.51 for field well-watered, drought, and controlled deficit treatments, respectively. Nitrogen levels created widely different leaf chlorophyll contents without affecting leaf temperature or CWSI. Canopy water stress measurements were robust across varying N levels, but CWSI did not correlate well with leaf area due to confounding effects of irrigation timing and nitrogen levels. Leaf temperature and CWSI are useful for evaluating crop water status, but nutrient status and timing of water stress must also be considered for crop growth prediction.

Tài liệu tham khảo

Akmal M, Janssens MJJ (2004) Productivity and light use efficiency of perennial ryegrass with contrasting water and nitrogen supplies. Field Crops Res 88:143–155. doi:10.1016/j.fcr.2003.12.004 Allen RG, Pereira LS, Raes D, Smith M (1998) FAO Irrigation and Drainage Paper No. 56, Crop Evapotranspiration (Guidelines for Computing Crop Water Requirements); FAO Water Resources, Development and management service: Rome, Italy, p 300 ASCE (2005) The asce standardized reference evapotranspiration equation. Task Committee on Standardization of Calculation of Reference ET. Environment and Water Resources Institute of ASCE. p 200 Baker JT, Mahan JR, Gitz DC, Lascano RJ, Ephrath JE (2013) Comparison of deficit irrigation scheduling methods that use canopy temperature measurements. Plant Biosyst 147:40–49. doi:10.1080/11263504.2012.736423 DeJonge KC, Andales AA, Ascough II JC, Hansen NC (2011) Modeling of full and controlled deficit irrigation scenarios for corn in a semiarid environment. Trans Am Soc Agric Biol Eng 54:481–492. doi:10.13031/2013.36451 DeJonge KC, Taghvaeian S, Trout TJ, Comas LH (2015) Comparison of canopy temperature-based water stress indices for maize. Agric Water Manag 156:51–62. doi:10.1016/j.agwat.2015.03.023 Ehrler WL, Idso SB, Jackson RD, Reginato RJ (1978) Wheat canopy temperature: Relation to plant water potential. Agron J 70:251–256 Evett SR, Howell TA, Schneider AD, Upchurch DR, Wanjura DF (1996) Canopy temperature based automatic irrigation control. Proc. International Conf. Evapotranspiration and Irrigation Scheduling, San Antonio 1996. pp 207–213 Farré I, Faci JM (2009) Deficit irrigation in maize for reducing agricultural water use in a Mediterranean environment. Ag Water Manag 96:383–394. doi:10.1016/j.agwat.2008.07.002 Fereres E, Soriano MA (2007) Deficit irrigation for reducing agricultural water use. J Exp Bot 58:147–159. doi:10.1093/jxb/erl165 Gardner BR, Shock CC (1989) Interpreting the crop water stress index. ASAE Paper 89-2642. The American Society of Agricultural Engineers, St. Joseph, MI Gardner BR, Nielsen DC, Shock BC (1992) Infrared thermometry and the crop water stress index. I. History, theory, and baselines. J Prod Agric 5:462–466 Gavilán P, Castillo-Llanque F (2009) Estimating reference evapotranspiration with atmometers in a semiarid environment. Agric Water Manag 96:465–472. doi:10.1016/j.agwat.2008.09.011 Geary B, Clark J, Hopkins BG, Jolley VD (2015) Deficient, adequate, and excess nitrogen levels established in hydroponics for biotic and abiotic stress-interaction studies in potato. J Plant Nutr 38:41–50. doi:10.1080/01904167.2014.912323 Gonzalez-Dugo B, Durand JL, Gastal F, Picon-Cochard C (2005) Short-term response of the nitrogen nutrition status of tall fescue and Italian ryegrass swards under water deficit. Aust J Agric Res 56:1269–1276. doi:10.1071/AR05064 Han M, Zhang H, DeJonge KC, Comas L, Trout TJ (2016) Estimating maize water stress by standard deviation of canopy temperature in thermal imagery. Agric Water Manag 177:400–409. doi:10.1016/j.agwat.2016.08.031 Hatfield JL (1990) Measuring plant stress with an infrared thermometer. J Hortic Sci 25:1535–1538 Howell TA, Hatfield JL, Yamada H, Davis KR (1984) Evaluation of cotton canopy temperature to detect crop water stress. T ASAE 27:84–88. doi:10.13031/2013.32740 Idso SB (1982) Non-water-stressed baselines: a key to measuring and interpreting plant water stress. J Agric Meteorol 27:59–70. doi:10.1016/0002-1571(82)90020-6 Idso SB, Jackson RD, Pinter PJ Jr, Reginato RJ, Hatfield JL (1981) Normalizing the stress-degree-day parameter for environmental variability. J Agric Meteorol 24:45–55. doi:10.1016/0002-1571(81)90032-7 Inman D, Khosla R, Reich R, Westfall DG (2008) Normalized difference vegetation index and soil color-based management zones in irrigated maize. Agron J 100:60–66 Irmak S, Haman D, Bastug R (2000) Determination of Crop Water Stress Index for irrigation timing and yield estimation of corn. Agron J 92:1221–1227. doi:10.2134/agronj2000.9261221x Irmak S, Payero JO, Martin DL (2005) Using modified atmometers (ETgage ®) for irrigation management. University of Nebraska-Lincoln Extension, Institute of Agriculture and Natural Resources: Lincoln, NE, pp 1–4 Jones HG (1999) Use of infrared thermometry for estimation of stomatal conductance as a possible aid to irrigation scheduling. Agric Forest Meteo 95:139–149. doi:10.1016/S0168-1923(99)00030-1 Kang S, Gu B, Du T, Zhang J (2003) Crop coefficient and ratio of transpiration to evapotranspiration of winter wheat and maize in a semi-humid region. Agric Water Manag 59:239–254 Khosla R, Fleming K, Delgado JA, Shaver TM, Westfall DG (2002) Use of site-specific management zones to improve nitrogen management for precision agriculture. J Soil Water Conserv 57:513–518 Klocke NL, Schneekloth JP, Melvin SR, Clark RT, Payero JO (2004) Field scale limited irrigation scenarios for water policy strategies. Appl Eng in Agric 20:623–631 Kullberg EG, DeJonge KC, Chávez JL (2017) Evaluation of thermal remote sensing indices to estimate crop evapotranspiration coefficients. Agric Water Manag 179:64–73. doi:10.1016/j.agwat.2016.07.007 Nielsen DC (1990) Scheduling irrigations for soybeans with the Crop Water Stress Index (CWSI). Field Crops Res 23:103–116 Padhi J, Misra RK, Payero JO (2012) Estimation of soil water deficit in an irrigated cotton field with infrared thermography. Field Crops Res 126:45–55. doi:10.1016/j.fcr.2011.09.015 Pandey RK, Maranville JW, Chetima MM (2000) Deficit irrigation and nitrogen effects on maize in a Sahelian environment. I: Grain yield and yield components. Agric Water Manag 46:1–13. doi:10.1016/S0378-3774(00)00073-1 Payero JO, Melvin SR, Irmak S, Tarkalson D (2006) Yield response of corn to deficit irrigation in a semiarid climate. Agric Water Manag 84:101–112. doi:10.1016/j.agwat.2006.01.009 Reginato RJ, Howe J (1985) Irrigation scheduling using crop indicators. J Irrig Drain Eng 111(2):125–133 Saseendran SA, Ahuja LR, Nielsen DC, Trout TJ, Ma L (2008) Use of crop simulation models to evaluate controlled deficit irrigation management options for corn in a semiarid environment. Water Resour Res 44:1–12. doi:10.1029/2007WR006181 Smith RCG, Barrs HD, Steiner IL, Stapper M (1985) Relationship between wheat yield and foliage temperature—theory and its application to infrared measurements. Agric Forest Meteorol 36:129–143. doi:10.1016/0168-1923(85)90005-X Taghvaeian S, Chávez JL, Hansen NC (2012) Infrared thermometry to estimate crop water stress index and water use of irrigated maize in northeastern Colorado. Remote Sens 4:3619–3637. doi:10.3390/rs4113619 Taghvaeian S, Chávez JL, Bausch WC, DeJonge KC, Trout TJ (2014a) Minimizing instrumentation requirement for estimating crop water stress index and transpiration in maize. Irrig Sci 32:53–65. doi:10.1007/s00271-013-0415-z Taghvaeian S, Chávez JL, Bausch WC, DeJonge KC, Trout TJ (2014b) Conventional and simplified canopy temperature indices predict water stress in sunflower. Agric Water Manag 144:69–80. doi:10.1016/j.agwat.2014.06.003 Traore SB, Carlson RE, Pilcher CD, Rice ME (2000) Bt and Non-Bt maize growth and development as affected by temperature and drought stress. Agron J 92:1027–1035. doi:10.2134/agronj2000.9251027x Víg R, Huzsvai L, Dobos A, Nagy J (2012) Systematic measurement methods for the determination of the SPAD values of maize (Zea mays L.) canopy and potato (Solanum tuberosum L.). Commun Soil Sci Plant Anal 43:1684–1693. doi:10.1080/00103624.2012.681740 Walker GK, Hatfield JL (1983) Stress measurement using foliage temperatures. Agron J 75:623–629 Wanjura DF, Hatfield JL, Upchurch DR (1990) Crop water stress index relationship with crop productivity. Irrig Sci 11:93–99. doi:10.1007/BF00188445 Zhu J, Tremblay N, Liang Y (2011) A corn nitrogen status indicator less affected by soil water content. Agron J 103:890–898. doi:10.2134/agronj2010.0351